Wood-decay type and fungal guild dominance across a North American log transplant experiment
We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y...
Gespeichert in:
Veröffentlicht in: | Fungal ecology 2022-10, Vol.59 (C), p.101151, Article 101151 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y of decomposition and determined wood rot type as a continuous variable using the lignin loss/density loss ratio (L/D) and assessed wood-rotting fungal guilds using high-throughput amplicon sequencing (HTAS) of the ITS-2 marker. We found L/D values in line with a white rot dominance in all three tree species, with pine having lower L/D values than aspen and birch. Based on HTAS data, white rot fungi were the most abundant and diverse wood-rotting fungal guild, and soft rot fungi were more abundant and diverse than brown rot fungi in logs with low L/D values. For aspen and birch logs, decay type was related to the wood density at sampling. For the pine logs, decay type was associated with the balance between white and brown/soft rot fungi abundance and OTU richness. Our results demonstrate that decay type is governed by biotic and abiotic factors, which vary by tree species.
•Wood-decay types and wood-rotting fungal guilds were measured in large-diameter decayed logs.•White-rot processes dominated among a wide-range of temperate forest sites.•Decay type was related to the wood decomposition rate for aspen and birch dead wood.•Decay type was associated with wood-rotting fungal guild balance in pine dead wood. |
---|---|
ISSN: | 1754-5048 |
DOI: | 10.1016/j.funeco.2022.101151 |