Generation of polarization entanglement via the quantum Zeno effect
The quantum Zeno effect reveals that continuous observation of a quantum system can significantly alter its evolution. Here, we present a method for establishing polarization entanglement between two initially unentangled photons in coupled waveguides via the quantum Zeno effect. We support our anal...
Gespeichert in:
Veröffentlicht in: | Optics express 2022-08, Vol.30 (18), p.31971-31985 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantum Zeno effect reveals that continuous observation of a quantum system can significantly alter its evolution. Here, we present a method for establishing polarization entanglement between two initially unentangled photons in coupled waveguides via the quantum Zeno effect. We support our analytical investigation with numerical simulations of the underlying Schrodinger equation describing the system. Further, we extend our technique to three coupled waveguides in a planar configuration and determine the parameters required to generate three-qubit W-states. In contrast to existing schemes based on a vacuum and single-photon encoding, the polarization encoding in our approach is compatible with quantum information protocols that remove photon loss through post-selection. Our findings offer a powerful quantum state engineering approach for photonic quantum information technologies. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.464550 |