Designing a Zn–Ag Catalyst Matrix and Electrolyzer System for CO2 Conversion to CO and Beyond

CO2 emissions can be transformed into high-added-value commodities through CO2 electrocatalysis; however, efficient low-cost electrocatalysts are needed for global scale-up. Inspired by other emerging technologies, the authors report the development of a gas diffusion electrode containing highly dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-10, Vol.34 (1)
Hauptverfasser: Lamaison, Sarah, Wakerley, David, Kracke, Frauke, Moore, Thomas, Zhou, Lan, Lee, Dong Un, Wang, Lei, Hubert, McKenzie A., Aviles Acosta, Jaime E., Gregoire, John M., Duoss, Eric B., Baker, Sarah, Beck, Victor A., Spormann, Alfred M., Fontecave, Marc, Hahn, Christopher, Jaramillo, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CO2 emissions can be transformed into high-added-value commodities through CO2 electrocatalysis; however, efficient low-cost electrocatalysts are needed for global scale-up. Inspired by other emerging technologies, the authors report the development of a gas diffusion electrode containing highly dispersed Ag sites in a low-cost Zn matrix. Here, this catalyst shows unprecedented Ag mass activity for CO production: –614 mA cm–2 at 0.17 mg of Ag. Subsequent electrolyte engineering demonstrates that halide anions can further improve stability and activity of the Zn–Ag catalyst, outperforming pure Ag and Au. Membrane electrode assemblies are constructed and coupled to a microbial process that converts the CO to acetate and ethanol. Combined, these concepts present pathways to design catalysts and systems for CO2 conversion toward sought-after products.
ISSN:0935-9648
1521-4095