Approximate symmetries of guiding-centre motion
In a strong, inhomogeneous magnetic field, charged particle dynamics may be studied in the guiding-centre approximation, which is known to be Hamiltonian. When the magnetic field is quasisymmetric, the first-order guiding-centre (FGC) Hamiltonian structure admits a continuous symmetry, and therefore...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2021-03, Vol.54 (12), p.125202, Article 125202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a strong, inhomogeneous magnetic field, charged particle dynamics may be studied in the guiding-centre approximation, which is known to be Hamiltonian. When the magnetic field is quasisymmetric, the first-order guiding-centre (FGC) Hamiltonian structure admits a continuous symmetry, and therefore a conserved quantity in addition to the energy. Since the FGC system is only an approximation, it is also interesting to consider approximate symmetries of the guiding-centre Hamiltonian structure. We find that any approximate spatial symmetry coincides with quasisymmetry to leading order. For approximate phase-space symmetries, we derive weaker conditions than quasisymmetry. The latter include 'weak quasisymmetry' as a subcase, recently proposed by Rodriguez et al. Our results, however, show that weak quasisymmetry is necessarily non-spatial at first order. Finally, we demonstrate that if the magnetic field is constrained to satisfy magnetohydrostatic force balance then an approximate symmetry must agree with quasisymmetry to leading order. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/abe58a |