Short-Range Order Tunes Optical Properties in Long-Range Disordered ZnSnN2–ZnO Alloy
Local site ordering offers a new paradigm for property control in functional materials. However, systems that exhibit a propensity for local order and global disorder are often challenging to characterize, and demonstrations of ordering-induced property tuning are few and far between. Here, we demon...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2022-05, Vol.34 (9), p.3910-3919 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Local site ordering offers a new paradigm for property control in functional materials. However, systems that exhibit a propensity for local order and global disorder are often challenging to characterize, and demonstrations of ordering-induced property tuning are few and far between. Here, we demonstrate that short-range ordering tunes the optical absorption edge in the long-range disordered alloy system (ZnSnN2)1–x (ZnO)2x at x = 0.25. We use combinatorial cosputtering to synthesize a set of thin-film samples spanning this alloy space. X-ray diffraction demonstrates lattice contraction as a function of alloy composition, confirming that a mixed-anion and -cation alloy has been synthesized. Using N and O K-edge X-ray absorption near-edge structure in conjunction with simulations of cation-disordered supercell structures, we find that samples exhibit octet-rule-breaking motifs around both anions. Upon annealing at an alloy composition of x = 0.25, X-ray absorption analysis suggests that local motif structure shifts toward octet-rule-conserving while long-range disorder is maintained. Spectroscopic ellipsometry reveals that local ordering increases the absorption edge energy at constant composition. Additionally, alloy-induced optical absorption edge tuning is demonstrated. This work paves the way toward property tuning with short-range ordering in (ZnSnN2)1–x (ZnO)2x and beyond. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.1c03938 |