Evaluation of silicon carbide as a divertor armor material in DIII-D H-mode discharges
Silicon carbide (SiC) represents a promising but largely untested plasma-facing material (PFM) for next-step fusion devices. In this work, an analytic mixed-material erosion model is developed by calculating the physical (via SDTrimSP) and chemical (via empirical scalings) sputtering yield from SiC,...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2021-04, Vol.61 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicon carbide (SiC) represents a promising but largely untested plasma-facing material (PFM) for next-step fusion devices. In this work, an analytic mixed-material erosion model is developed by calculating the physical (via SDTrimSP) and chemical (via empirical scalings) sputtering yield from SiC, Si, and C. The Si content in the near-surface SiC layer is predicted to increase during D plasma bombardment due to more efficient physical and chemical sputtering of C relative to Si. Silicon erosion from SiC thereby occurs primarily from sputtering of the enriched Si layer, rather than directly from the SiC itself. SiC coatings on ATJ graphite, manufactured via chemical vapor deposition, were exposed to repeated H-mode plasma discharges in the DIII-D tokamak to test this model. The qualitative trends from analytic modeling are reproduced by the experimental measurements, obtained via spectroscopic inference using the S/XB method. Quantitatively the model slightly under-predicts measured erosion rates, which is attributed to uncertainties in the ion impact angle distribution, as well as the effect of edge-localized modes. After exposure, minimal changes to the macroscopic or microscopic surface morphology of the SiC coatings were observed. Compositional analysis reveals Si enrichment of about 10%, in line with expectations from the erosion model. Extrapolating to a DEMO-type device, an order-of-magnitude decrease in impurity sourcing, and up to a factor of 2 decrease in impurity radiation, is expected with SiC walls, relative to graphite, if low C plasma impurity content can be achieved. Furthermore, these favorable erosion properties motivate further investigations of SiC as a low-Z, non-metallic PFM. |
---|---|
ISSN: | 0029-5515 1741-4326 |