Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells
All-inorganic CsPbI3 perovskite has a near-ideal band gap, high thermal stability, and simple material composition, thus presenting a promising option for developing perovskite/Si tandem solar cells. However, CsPbI3 undergoes a rapid phase transition under exposure to moisture and exhibits a signifi...
Gespeichert in:
Veröffentlicht in: | Joule 2022-07, Vol.6 (7), p.1672-1688 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | All-inorganic CsPbI3 perovskite has a near-ideal band gap, high thermal stability, and simple material composition, thus presenting a promising option for developing perovskite/Si tandem solar cells. However, CsPbI3 undergoes a rapid phase transition under exposure to moisture and exhibits a significant performance gap relative to other perovskite compounds, particularly in the p-i-n structure favored for perovskite/Si tandems. In this work, we demonstrate highly efficient and stable p-i-n-structured CsPbI3 perovskite solar cells by surface engineering the CsPbI3 layer with oxidized Ti3C2Tx MXene (OMXene) nanoplates via spray coatings. OMXene provides a physical barrier against moisture and improves charge separation at the perovskite-electron transporting layer interface via an enhanced electric field. Consequently, we demonstrated CsPbI3/OMXene-based p-i-n devices with efficiencies of 19.69% for 0.096-cm2 cells and 14.64% for 25-cm2 minimodules. The encapsulated minimodule showed good stability, retaining ~85% of the initial efficiency under simultaneous damp heat (85°C/85% relative humidity) and 1-sun light soaking for over 1,000 h. |
---|---|
ISSN: | 2542-4351 2542-4351 |
DOI: | 10.1016/j.joule.2022.05.013 |