Tantalum Suboxide Films with Tunable Composition and Electrical Resistivity Deposited by Reactive Magnetron Sputtering
Tantalum-based films with tailored composition, density, and electrical resistivity are of interest for next generation hohlraums for magnetized indirect-drive inertial confinement fusion. Here, we use reactive direct-current magnetron sputtering to deposit tantalum suboxide films with O content in...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2022-07, Vol.12 (7), p.917 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tantalum-based films with tailored composition, density, and electrical resistivity are of interest for next generation hohlraums for magnetized indirect-drive inertial confinement fusion. Here, we use reactive direct-current magnetron sputtering to deposit tantalum suboxide films with O content in the range of 46–71 at.%. In contrast to a common approach involving varying reactive gas contents, compositional control is achieved kinetically by changing the total chamber pressure and the deposition rate, while keeping the working gas mix of Ar-5%O2 constant. The resultant films are X-ray amorphous with electrical resistivity varying by over seven orders of magnitude. The dominant conduction mechanism changes from metallic to activated tunneling above ∼55 at.% of O, which is characterized by a sharp increase in resistivity and a decrease in the carrier density at low temperatures. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings12070917 |