Subpicosecond Optical Stress Generation in Multiferroic BiFeO3

Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-06, Vol.22 (11), p.4294-4300
Hauptverfasser: Lee, Hyeon Jun, Ahn, Youngjun, Marks, Samuel D., Sri Gyan, Deepankar, Landahl, Eric C., Lee, Jun Young, Kim, Tae Yeon, Unithrattil, Sanjith, Chun, Sae Hwan, Kim, Sunam, Park, Sang-Youn, Eom, Intae, Adamo, Carolina, Schlom, Darrell G., Wen, Haidan, Lee, Sooheyong, Jo, Ji Young, Evans, Paul G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO3 thin film. Stress generation includes a fast component with a 1/e rise time with an upper limit of 300 fs and longer-rise time components extending to 1.5 ps. The contributions of the fast and delayed components vary as a function of optical fluence, with a reduced a fast-component contribution at high fluence. The results provide insight into stress-generation mechanisms linked to the population of excited electrons and point to new directions in the application of nanoscale multiferroics and related ferroic complex oxides. The fast component of the stress indicates that structural parameters and properties of ferroelectric thin film materials can be optically modulated with 3 dB bandwidths of at least 0.5 THz.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c04831