Leveraging Nitrogen Linkages in the Formation of a Porous Thorium–Organic Nanotube Suitable for Iodine Capture
We report the synthesis, characterization, and iodine capture application of a novel thorium–organic nanotube, TSN-626, [Th6O4(OH)4(C6H4NO2)7(CHO2)5(H2O)3]·3H2O. The classification as a metal–organic nanotube (MONT) distinguishes it as a rare and reduced dimensionality subset of metal–organic fram...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2022-06, Vol.61 (25), p.9480-9492 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the synthesis, characterization, and iodine capture application of a novel thorium–organic nanotube, TSN-626, [Th6O4(OH)4(C6H4NO2)7(CHO2)5(H2O)3]·3H2O. The classification as a metal–organic nanotube (MONT) distinguishes it as a rare and reduced dimensionality subset of metal–organic frameworks (MOFs); the structure is additionally hallmarked by low node connectivity. TSN-626 is composed of hexameric thorium secondary building units and mixed O/N-donor isonicotinate ligands that demonstrate selective ditopicity, yielding both terminating and bridging moieties. Because hard Lewis acid tetravalent metals have a propensity to bind with electron donors of rival hardness (e.g., carboxylate groups), such Th–N coordination in a MOF is uncommon. However, the formation of key structural Th–N bonds in TSN-626 cap some of the square antiprismatic metal centers, a position usually occupied by terminal water ligands. TSN-626 was characterized by using complementary analytical and computational techniques: X-ray diffraction, vibrational spectroscopy, N2 physisorption isotherms, and density functional theory. TSN-626 satisfies design aspects for the chemisorption of iodine. The synergy between accessibility through pores, vacancies at the metal–oxo nodes, and pendent N-donor sites allowed a saturated iodine loading of 955 mg g–1 by vapor methods. The crystallization of TSN-626 diversifies actinide–MOF linker selection to include soft electron donors, and these Th–N linkages can be leveraged for the investigation of metal-to-ligand bonding and unconventional topological expressions. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.2c00427 |