Robust Dynamic Mode Decomposition

This paper develops a robust dynamic mode decomposition (RDMD) method endowed with statistical and numerical robustness. Statistical robustness ensures estimation efficiency at the Gaussian and non-Gaussian probability distributions, including heavy-tailed distributions. The proposed RDMD is statist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.65473-65484
Hauptverfasser: Hossein Abolmasoumi, Amir, Netto, Marcos, Mili, Lamine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a robust dynamic mode decomposition (RDMD) method endowed with statistical and numerical robustness. Statistical robustness ensures estimation efficiency at the Gaussian and non-Gaussian probability distributions, including heavy-tailed distributions. The proposed RDMD is statistically robust because the outliers in the data set are flagged via projection statistics and suppressed using a Schweppe-type Huber generalized maximum-likelihood estimator that minimizes a convex Huber cost function. The latter is solved using the iteratively reweighted least-squares algorithm that is known to exhibit an excellent convergence property and numerical stability than the Newton algorithms. Several numerical simulations using canonical models of dynamical systems demonstrate the excellent performance of the proposed RDMD method. The results reveal that it outperforms several other methods proposed in the literature.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3183760