Performance Evaluation of Si/SiC Hybrid Switch-Based Three-Level Active Neutral-Point-Clamped Inverter
In this paper, two types of Silicon (Si) IGBT and Silicon Carbide (SiC) hybrid switch (Si/SiC HyS) based three-level active neutral-point-clamped (3L-ANPC) inverter are proposed for high efficiency and low device cost. The proposed Si/SiC HyS-based 3L-ANPC inverters are compared with the full Si IGB...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of industry applications 2022, Vol.3, p.90-103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, two types of Silicon (Si) IGBT and Silicon Carbide (SiC) hybrid switch (Si/SiC HyS) based three-level active neutral-point-clamped (3L-ANPC) inverter are proposed for high efficiency and low device cost. The proposed Si/SiC HyS-based 3L-ANPC inverters are compared with the full Si IGBT, full SiC MOSFET, and Si with SiC devices-based hybrid 3L-ANPC solutions on the inverter efficiency, power capacity, and device cost. It is shown that compared with the full Si IGBT 3L-ANPC solution, the inverter efficiency improvement by Si/SiC HyS is 2.4% and 1.8% at light load condition and heavy load condition, respectively. Compared to the full SiC MOSFET solution and 2-SiC MOSFET hybrid scheme, the device cost of 2-Si/SiC HyS-based 3L-ANPC is reduced by 78% and 50% with 0.28% and 0.21% maximum inverter efficiency sacrifices. The testing results show that the proposed Si/SiC HyS-based 3L-ANPC inverter is a cost-effective way to realize high inverter efficiency. Between the two proposed Si/SiC HyS-based 3L-ANPC inverters, the 2-Si/SiC HyS-based 3L-ANPC inverter has lower device cost which makes it more suitable for cost-sensitive and high efficiency applications. While the 4-Si/SiC HyS-based 3L-ANPC inverter has higher output power capacity, making it a better candidate for high power density, high power capacity, and high efficiency applications. |
---|---|
ISSN: | 2644-1241 2644-1241 |
DOI: | 10.1109/OJIA.2022.3179225 |