Photoluminescence Induced by Substitutional Nitrogen in Single-Layer Tungsten Disulfide

The electronic and optical properties of two-dimensional materials can be strongly influenced by defects, some of which can find significant implementations, such as controllable doping, prolonged valley lifetime, and single-photon emissions. In this work, we demonstrate that defects created by remo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-05, Vol.16 (5), p.7428-7437
Hauptverfasser: Qian, Qingkai, Wu, Wenjing, Peng, Lintao, Wang, Yuanxi, Tan, Anne Marie Z., Liang, Liangbo, Hus, Saban M., Wang, Ke, Choudhury, Tanushree H., Redwing, Joan M., Puretzky, Alexander A., Geohegan, David B., Hennig, Richard G., Ma, Xuedan, Huang, Shengxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic and optical properties of two-dimensional materials can be strongly influenced by defects, some of which can find significant implementations, such as controllable doping, prolonged valley lifetime, and single-photon emissions. In this work, we demonstrate that defects created by remote N2 plasma exposure in single-layer WS2 can induce a distinct low-energy photoluminescence (PL) peak at 1.59 eV, which is in sharp contrast to that caused by remote Ar plasma. This PL peak has a critical requirement on the N2 plasma exposure dose, which is strongest for WS2 with about 2.0% sulfur deficiencies (including substitutions and vacancies) and vanishes at 5.6% or higher sulfur deficiencies. Both experiments and first-principles calculations suggest that this 1.59 eV PL peak is caused by defects related to the sulfur substitutions by nitrogen, even though low-temperature PL measurements also reveal that not all the sulfur vacancies are remedied by the substitutional nitrogen. The distinct low-energy PL peak suggests that the substitutional nitrogen defect in single-layer WS2 can potentially serve as an isolated artificial atom for creating single-photon emitters, and its intensity can also be used to monitor the doping concentrations of substitutional nitrogen.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c09809