Taylor expansions and Padé approximants for cumulants of conserved charge fluctuations at nonvanishing chemical potentials

Using high statistics datasets generated in (2+1)-flavor QCD calculations at finite temperature we present results for low order cumulants of net baryon-number fluctuations at non-zero values of the baryon chemical potential. We calculate Taylor expansions for the pressure (zeroth order cumulant), n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2022-04, Vol.105 (7), Article 074511
Hauptverfasser: Bollweg, D., Goswami, J., Kaczmarek, O., Karsch, F., Mukherjee, Swagato, Petreczky, P., Schmidt, C., Scior, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using high statistics datasets generated in (2+1)-flavor QCD calculations at finite temperature we present results for low order cumulants of net baryon-number fluctuations at non-zero values of the baryon chemical potential. We calculate Taylor expansions for the pressure (zeroth order cumulant), net baryon-number density (first order cumulant) and the variance of the distribution on net-baryon number fluctuations (second order cumulant). We obtain series expansions from an eighth order expansion of the pressure and compare these to diagonal Pad´e approximants. This allows us to estimate the range of values for the baryon chemical potential in which these expansions are reliable. We find µB/T ≤ 2.5, 2.0 and 1.5 for the zeroth, first and second order cumulants, respectively. We furthermore, construct estimators for the radius of convergence of the Taylor series of the pressure. In the vicinity of the pseudo-critical temperature, Tpc ' 156.5 MeV, we find µB/T >∼ 2.9 at vanishing strangeness chemical potential and somewhat larger values for strangeness neutral matter. These estimates are temperature dependent and range from µB/T >∼ 2.2 at T = 135 MeV to µB/T >∼ 3.2 at T = 165 MeV. The estimated radius of convergences is the same for any higher order cumulant.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.105.074511