Engineering hierarchical nanochannels in graphene oxide membranes by etching and polydopamine intercalation for highly efficient dye recovery
Graphene oxide (GO) membranes have been extensively investigated for dye removal from wastewater, and they are often reduced or cross-linked to improve their stability, which, however, decreases water permeance. This study demonstrates an effective approach to enhance both durability and water perme...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-02, Vol.433 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene oxide (GO) membranes have been extensively investigated for dye removal from wastewater, and they are often reduced or cross-linked to improve their stability, which, however, decreases water permeance. This study demonstrates an effective approach to enhance both durability and water permeance and retain dye rejection by synergistically integrating chemical etching using H2O2 and intercalation with polydopamine (PDA) to create hierarchical nanochannels. The nanopores on the holey GO (HGO) shorten the diffusion path, while the PDA intercalation increases the channel sizes and stabilizes the GO nanosheets. Optimized membranes exhibit water permeance of 70 - 120 LMH/bar (much higher than state-of-the-art commercial polyamide membranes) and a Congo Red rejection of 98.5%, better than GO membranes reported in the literature. Moreover, a membrane with water permeance of 70 LMH/bar exhibits stable performance in a 3-day continuous crossflow filtration test. The versatile approach reported here may be applied to other two-dimensional materials to create hierarchical nanochannels for desired separations. |
---|---|
ISSN: | 1385-8947 1873-3212 |