Self-Anchored Platinum-Decorated Antimony-Doped-Tin Oxide as a Durable Oxygen Reduction Electrocatalyst
The lifetime of commercial proton exchange membrane fuel cells (PEMFCs) is circumscribed by the insufficient durability of commercial catalysts. The use of metal oxide supports in place of carbon significantly increases electrocatalyst durability. Herein, following density functional theory predicti...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2021-06, Vol.11 (12), p.7006-7017 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lifetime of commercial proton exchange membrane fuel cells (PEMFCs) is circumscribed by the insufficient durability of commercial catalysts. The use of metal oxide supports in place of carbon significantly increases electrocatalyst durability. Herein, following density functional theory predictions of improved platinum (Pt) stability on antimony-doped tin oxide (ATO) supports, we synthesized ATO whose morphology and crystal structure were engineered using a Pt-anchoring technique. X-ray photoelectron spectroscopy indicated that the Pt anchor sites aided in the reduction of Pt precursors to Pt on the ATO surface. X-ray absorption near-edge spectroscopy revealed the existence of strong metal–support interactions (SMSIs) between Pt and ATO. The combination of SMSIs and high control over Pt dispersion enabled the Pt/Pt-aerogel-ATO (Pt supported on aerogel ATO with Pt anchor sites) electrocatalyst to achieve 2 × the area-specific activity of Pt/C in ex situ testing. In a H2/air PEMFC, Pt/Pt-aerogel-ATO cathodes enabled 20% higher peak power density and |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.1c00963 |