Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery

1,2-Dimethoxyethane (DME) is a common electrolyte solvent for lithium metal batteries. Various DME-based electrolyte designs have improved long-term cyclability of high-voltage full cells. However, insufficient Coulombic efficiency at the Li anode and poor high-voltage stability remain a challenge f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-11, Vol.143 (44), p.18703-18713
Hauptverfasser: Chen, Yuelang, Yu, Zhiao, Rudnicki, Paul, Gong, Huaxin, Huang, Zhuojun, Kim, Sang Cheol, Lai, Jian-Cheng, Kong, Xian, Qin, Jian, Cui, Yi, Bao, Zhenan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1,2-Dimethoxyethane (DME) is a common electrolyte solvent for lithium metal batteries. Various DME-based electrolyte designs have improved long-term cyclability of high-voltage full cells. However, insufficient Coulombic efficiency at the Li anode and poor high-voltage stability remain a challenge for DME electrolytes. Here, we report a molecular design principle that utilizes a steric hindrance effect to tune the solvation structures of Li+ ions. We hypothesized that by substituting the methoxy groups on DME with larger-sized ethoxy groups, the resulting 1,2-diethoxyethane (DEE) should have a weaker solvation ability and consequently more anion-rich inner solvation shells, both of which enhance interfacial stability at the cathode and anode. Experimental and computational evidence indicates such steric-effect-based design leads to an appreciable improvement in electrochemical stability of lithium bis­(fluoro­sulfonyl)­imide (LiFSI)/DEE electrolytes. Under stringent full-cell conditions of 4.8 mAh cm–2 NMC811, 50 μm thin Li, and high cutoff voltage at 4.4 V, 4 M LiFSI/DEE enabled 182 cycles until 80% capacity retention while 4 M LiFSI/DME only achieved 94 cycles. This work points out a promising path toward the molecular design of non-fluorinated ether-based electrolyte solvents for practical high-voltage Li metal batteries.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.1c09006