Probing the Source of Enhanced Activity in Multiborylated Silsesquioxane Catalysts for C–O Bond Reduction
A family of variably borylated silsesquioxanes can be conveniently synthesized by the hydroboration of vinyl- and allyl-modified silsesquioxanes using Piers’ borane (HB(C6F5)2). The catalytic activity of these Lewis acidic catalysts has been examined for the reduction of isochroman with 1,1,3,3-tet...
Gespeichert in:
Veröffentlicht in: | Organometallics 2022-11, Vol.41 (22), p.3152-3160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A family of variably borylated silsesquioxanes can be conveniently synthesized by the hydroboration of vinyl- and allyl-modified silsesquioxanes using Piers’ borane (HB(C6F5)2). The catalytic activity of these Lewis acidic catalysts has been examined for the reduction of isochroman with 1,1,3,3-tetramethyldisiloxane, and loadings as low as 0.05 mol % boron are feasible. Despite scaling all catalytic reactions to the boron Lewis acid, the multiborylated silsesquioxanes showed exceptional catalytic activity compared to the monoborylated silsesquioxanes. Even at a catalyst loading of 0.05 mol %, the multiborylated catalyst could achieve a TOF of 7 min–1. The ideal position for boron on the silsesquioxanes was at the C2 position, as this position did not inhibit Lewis acidity via the β-silicon effect (at C1) or limit the inductive electron-withdrawing ability of the silsesquioxane core (at C3). The high catalyst activity is attributed to the increased Lewis acidity of the multiborylated silsesquioxanes. |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/acs.organomet.1c00701 |