Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors

The charge transport in single-molecule junctions depends critically on the chemical identity of the anchor groups that are used to connect the molecular wires to the electrodes. In this research, we report a new anchoring strategy — called the electrostatic anchor here — formed through the efficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-02, Vol.143 (7)
Hauptverfasser: Chen, Hongliang, Brasiliense, Vitor, Mo, Jingshan, Zhang, Long, Jiao, Yang, Chen, Zhu, Jones, Leighton O., He, Gen, Guo, Qing-Hui, Chen, Xiao-Yang, Song, Bo, Schatz, George C., Stoddart, J. Fraser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The charge transport in single-molecule junctions depends critically on the chemical identity of the anchor groups that are used to connect the molecular wires to the electrodes. In this research, we report a new anchoring strategy — called the electrostatic anchor here — formed through the efficient Coulombic interaction between the gold electrodes and the positively charged pyridinium terminal groups. Our results show that these pyridinium groups serve as efficient electrostatic anchors forming robust gold–molecule–gold junctions. Here, we have also observed binary switching in dicationic viologen molecular junctions, demonstrating an electron injection-induced redox switching in single-molecule junctions. We attribute the difference in low- and high conductance states to a dicationic ground state and a radical cationic metastable state, respectively. Overall, this anchoring strategy and redox switching mechanism could constitute the basis for a new class of redox-activated single-molecule switches.
ISSN:0002-7863
1520-5126