Special Issue: Geostatistics and Machine Learning
Recent years have seen a steady growth in the number of papers that apply machine learning methods to problems in the earth sciences. Although they have different origins, machine learning and geostatistics share concepts and methods. For example, the kriging formalism can be cast in the machine lea...
Gespeichert in:
Veröffentlicht in: | Mathematical geosciences 2022-04, Vol.54 (3), p.459-465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent years have seen a steady growth in the number of papers that apply machine learning methods to problems in the earth sciences. Although they have different origins, machine learning and geostatistics share concepts and methods. For example, the kriging formalism can be cast in the machine learning framework of Gaussian process regression. Machine learning, with its focus on algorithms and ability to seek, identify, and exploit hidden structures in big data sets, is providing new tools for exploration and prediction in the earth sciences. Geostatistics, on the other hand, offers interpretable models of spatial (and spatiotemporal) dependence. This special issue on
Geostatistics and Machine Learning
aims to investigate applications of machine learning methods as well as hybrid approaches combining machine learning and geostatistics which advance our understanding and predictive ability of spatial processes. |
---|---|
ISSN: | 1874-8961 1874-8953 |
DOI: | 10.1007/s11004-022-09998-6 |