The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor

State-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2022-04, Vol.35 (7), p.2189-2207
Hauptverfasser: Kim, Hanjun, Pendergrass, Angeline G., Kang, Sarah M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2207
container_issue 7
container_start_page 2189
container_title Journal of climate
container_volume 35
creator Kim, Hanjun
Pendergrass, Angeline G.
Kang, Sarah M.
description State-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the intermodel difference in water vapor shortwave absorptivity. Hence, we alter the water vapor shortwave absorptivity in the Community Earth System Model, version 1, with the Community Atmosphere Model, version 4 (CESM1-CAM4). Increasing the water vapor shortwave absorptivity leads to a reduction in global-mean precipitation and a La Niña–like cooling over the tropical Pacific. The global-mean atmospheric energy budget suggests that the precipitation is suppressed as a way to compensate for the increased SWA. The precipitation reduction is driven by the weakened surface winds, stabilized planetary boundary layer, and surface cooling. The La Niña–like cooling over the tropical Pacific is attributed to the zonal asymmetry of climatological evaporative damping efficiency and the low cloud enhancement over the eastern basin. Complementary fixed SSTs simulations suggest that the latter is more fundamental and that it primarily arises from atmospheric processes. Consistent with our experiments, the CMIP5/6 models with a higher global-mean SWA tend to produce tropical Pacific toward a more La Niña–like mean state, highlighting the possible role of water vapor shortwave absorptivity for shaping the mean-state climate patterns.
doi_str_mv 10.1175/JCLI-D-21-0417.1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1855861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675699479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-2ccdcda4e605b166b2b741ace61493d4dfea595b22c0cbd467153b67b04fc31a3</originalsourceid><addsrcrecordid>eNotkEtPwzAMgCMEEmNw5xjBuSNO82iP08ZjMMRhA45RkqZap9GUJAPt39NqXGzZ_mTZH0LXQCYAkt89z5aLbJ5RyAgDOYETNAJOSV8xeopGpChZVkjOz9FFjFtCgApCRuhlvXF47jrXVq61Dvsavzrd4tmu-dLJ4VUaom_xauND-tU_Dk9N9KFLTd80B_zZzwP-0J0Pl-is1rvorv7zGL0_3K9nT9ny7XExmy4zmzOSMmptZSvNnCDcgBCGGslAWyeAlXnFqtppXnJDqSXWVExI4LkR0hBW2xx0PkY3x70-pkZF2yRnN9a3rbNJQcF5IaCHbo9QF_z33sWktn4f2v4uRYXkoiyZLHuKHCkbfIzB1aoL_ePhoICowasavKq5oqAGrwryP3shaio</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675699479</pqid></control><display><type>article</type><title>The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Hanjun ; Pendergrass, Angeline G. ; Kang, Sarah M.</creator><creatorcontrib>Kim, Hanjun ; Pendergrass, Angeline G. ; Kang, Sarah M.</creatorcontrib><description>State-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the intermodel difference in water vapor shortwave absorptivity. Hence, we alter the water vapor shortwave absorptivity in the Community Earth System Model, version 1, with the Community Atmosphere Model, version 4 (CESM1-CAM4). Increasing the water vapor shortwave absorptivity leads to a reduction in global-mean precipitation and a La Niña–like cooling over the tropical Pacific. The global-mean atmospheric energy budget suggests that the precipitation is suppressed as a way to compensate for the increased SWA. The precipitation reduction is driven by the weakened surface winds, stabilized planetary boundary layer, and surface cooling. The La Niña–like cooling over the tropical Pacific is attributed to the zonal asymmetry of climatological evaporative damping efficiency and the low cloud enhancement over the eastern basin. Complementary fixed SSTs simulations suggest that the latter is more fundamental and that it primarily arises from atmospheric processes. Consistent with our experiments, the CMIP5/6 models with a higher global-mean SWA tend to produce tropical Pacific toward a more La Niña–like mean state, highlighting the possible role of water vapor shortwave absorptivity for shaping the mean-state climate patterns.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-21-0417.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Absorption ; Absorption coefficient ; Absorptivity ; Atmospheric absorption ; Atmospheric models ; Atmospheric processes ; Boundary layer stability ; Boundary layers ; Climate ; Climate models ; Cooling ; Damping ; El Nino phenomena ; Energy budget ; La Nina ; Low clouds ; Mean precipitation ; Modelling ; Planetary boundary layer ; Precipitation ; Reduction ; Surface chemistry ; Surface cooling ; Surface wind ; Tropical atmosphere ; Tropical climate ; Water vapor ; Water vapor absorption ; Water vapour ; Winds</subject><ispartof>Journal of climate, 2022-04, Vol.35 (7), p.2189-2207</ispartof><rights>Copyright American Meteorological Society Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-2ccdcda4e605b166b2b741ace61493d4dfea595b22c0cbd467153b67b04fc31a3</citedby><cites>FETCH-LOGICAL-c340t-2ccdcda4e605b166b2b741ace61493d4dfea595b22c0cbd467153b67b04fc31a3</cites><orcidid>0000-0003-4635-275X ; 000000034635275X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3681,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1855861$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hanjun</creatorcontrib><creatorcontrib>Pendergrass, Angeline G.</creatorcontrib><creatorcontrib>Kang, Sarah M.</creatorcontrib><title>The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor</title><title>Journal of climate</title><description>State-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the intermodel difference in water vapor shortwave absorptivity. Hence, we alter the water vapor shortwave absorptivity in the Community Earth System Model, version 1, with the Community Atmosphere Model, version 4 (CESM1-CAM4). Increasing the water vapor shortwave absorptivity leads to a reduction in global-mean precipitation and a La Niña–like cooling over the tropical Pacific. The global-mean atmospheric energy budget suggests that the precipitation is suppressed as a way to compensate for the increased SWA. The precipitation reduction is driven by the weakened surface winds, stabilized planetary boundary layer, and surface cooling. The La Niña–like cooling over the tropical Pacific is attributed to the zonal asymmetry of climatological evaporative damping efficiency and the low cloud enhancement over the eastern basin. Complementary fixed SSTs simulations suggest that the latter is more fundamental and that it primarily arises from atmospheric processes. Consistent with our experiments, the CMIP5/6 models with a higher global-mean SWA tend to produce tropical Pacific toward a more La Niña–like mean state, highlighting the possible role of water vapor shortwave absorptivity for shaping the mean-state climate patterns.</description><subject>Absorption</subject><subject>Absorption coefficient</subject><subject>Absorptivity</subject><subject>Atmospheric absorption</subject><subject>Atmospheric models</subject><subject>Atmospheric processes</subject><subject>Boundary layer stability</subject><subject>Boundary layers</subject><subject>Climate</subject><subject>Climate models</subject><subject>Cooling</subject><subject>Damping</subject><subject>El Nino phenomena</subject><subject>Energy budget</subject><subject>La Nina</subject><subject>Low clouds</subject><subject>Mean precipitation</subject><subject>Modelling</subject><subject>Planetary boundary layer</subject><subject>Precipitation</subject><subject>Reduction</subject><subject>Surface chemistry</subject><subject>Surface cooling</subject><subject>Surface wind</subject><subject>Tropical atmosphere</subject><subject>Tropical climate</subject><subject>Water vapor</subject><subject>Water vapor absorption</subject><subject>Water vapour</subject><subject>Winds</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAMgCMEEmNw5xjBuSNO82iP08ZjMMRhA45RkqZap9GUJAPt39NqXGzZ_mTZH0LXQCYAkt89z5aLbJ5RyAgDOYETNAJOSV8xeopGpChZVkjOz9FFjFtCgApCRuhlvXF47jrXVq61Dvsavzrd4tmu-dLJ4VUaom_xauND-tU_Dk9N9KFLTd80B_zZzwP-0J0Pl-is1rvorv7zGL0_3K9nT9ny7XExmy4zmzOSMmptZSvNnCDcgBCGGslAWyeAlXnFqtppXnJDqSXWVExI4LkR0hBW2xx0PkY3x70-pkZF2yRnN9a3rbNJQcF5IaCHbo9QF_z33sWktn4f2v4uRYXkoiyZLHuKHCkbfIzB1aoL_ePhoICowasavKq5oqAGrwryP3shaio</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Kim, Hanjun</creator><creator>Pendergrass, Angeline G.</creator><creator>Kang, Sarah M.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4635-275X</orcidid><orcidid>https://orcid.org/000000034635275X</orcidid></search><sort><creationdate>20220401</creationdate><title>The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor</title><author>Kim, Hanjun ; Pendergrass, Angeline G. ; Kang, Sarah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-2ccdcda4e605b166b2b741ace61493d4dfea595b22c0cbd467153b67b04fc31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Absorption coefficient</topic><topic>Absorptivity</topic><topic>Atmospheric absorption</topic><topic>Atmospheric models</topic><topic>Atmospheric processes</topic><topic>Boundary layer stability</topic><topic>Boundary layers</topic><topic>Climate</topic><topic>Climate models</topic><topic>Cooling</topic><topic>Damping</topic><topic>El Nino phenomena</topic><topic>Energy budget</topic><topic>La Nina</topic><topic>Low clouds</topic><topic>Mean precipitation</topic><topic>Modelling</topic><topic>Planetary boundary layer</topic><topic>Precipitation</topic><topic>Reduction</topic><topic>Surface chemistry</topic><topic>Surface cooling</topic><topic>Surface wind</topic><topic>Tropical atmosphere</topic><topic>Tropical climate</topic><topic>Water vapor</topic><topic>Water vapor absorption</topic><topic>Water vapour</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hanjun</creatorcontrib><creatorcontrib>Pendergrass, Angeline G.</creatorcontrib><creatorcontrib>Kang, Sarah M.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hanjun</au><au>Pendergrass, Angeline G.</au><au>Kang, Sarah M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor</atitle><jtitle>Journal of climate</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>35</volume><issue>7</issue><spage>2189</spage><epage>2207</epage><pages>2189-2207</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>State-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the intermodel difference in water vapor shortwave absorptivity. Hence, we alter the water vapor shortwave absorptivity in the Community Earth System Model, version 1, with the Community Atmosphere Model, version 4 (CESM1-CAM4). Increasing the water vapor shortwave absorptivity leads to a reduction in global-mean precipitation and a La Niña–like cooling over the tropical Pacific. The global-mean atmospheric energy budget suggests that the precipitation is suppressed as a way to compensate for the increased SWA. The precipitation reduction is driven by the weakened surface winds, stabilized planetary boundary layer, and surface cooling. The La Niña–like cooling over the tropical Pacific is attributed to the zonal asymmetry of climatological evaporative damping efficiency and the low cloud enhancement over the eastern basin. Complementary fixed SSTs simulations suggest that the latter is more fundamental and that it primarily arises from atmospheric processes. Consistent with our experiments, the CMIP5/6 models with a higher global-mean SWA tend to produce tropical Pacific toward a more La Niña–like mean state, highlighting the possible role of water vapor shortwave absorptivity for shaping the mean-state climate patterns.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-21-0417.1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4635-275X</orcidid><orcidid>https://orcid.org/000000034635275X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2022-04, Vol.35 (7), p.2189-2207
issn 0894-8755
1520-0442
language eng
recordid cdi_osti_scitechconnect_1855861
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Absorption
Absorption coefficient
Absorptivity
Atmospheric absorption
Atmospheric models
Atmospheric processes
Boundary layer stability
Boundary layers
Climate
Climate models
Cooling
Damping
El Nino phenomena
Energy budget
La Nina
Low clouds
Mean precipitation
Modelling
Planetary boundary layer
Precipitation
Reduction
Surface chemistry
Surface cooling
Surface wind
Tropical atmosphere
Tropical climate
Water vapor
Water vapor absorption
Water vapour
Winds
title The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dependence%20of%20Mean%20Climate%20State%20on%20Shortwave%20Absorption%20by%20Water%20Vapor&rft.jtitle=Journal%20of%20climate&rft.au=Kim,%20Hanjun&rft.date=2022-04-01&rft.volume=35&rft.issue=7&rft.spage=2189&rft.epage=2207&rft.pages=2189-2207&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-21-0417.1&rft_dat=%3Cproquest_osti_%3E2675699479%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675699479&rft_id=info:pmid/&rfr_iscdi=true