The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor
State-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2022-04, Vol.35 (7), p.2189-2207 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | State-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the intermodel difference in water vapor shortwave absorptivity. Hence, we alter the water vapor shortwave absorptivity in the Community Earth System Model, version 1, with the Community Atmosphere Model, version 4 (CESM1-CAM4). Increasing the water vapor shortwave absorptivity leads to a reduction in global-mean precipitation and a La Niña–like cooling over the tropical Pacific. The global-mean atmospheric energy budget suggests that the precipitation is suppressed as a way to compensate for the increased SWA. The precipitation reduction is driven by the weakened surface winds, stabilized planetary boundary layer, and surface cooling. The La Niña–like cooling over the tropical Pacific is attributed to the zonal asymmetry of climatological evaporative damping efficiency and the low cloud enhancement over the eastern basin. Complementary fixed SSTs simulations suggest that the latter is more fundamental and that it primarily arises from atmospheric processes. Consistent with our experiments, the CMIP5/6 models with a higher global-mean SWA tend to produce tropical Pacific toward a more La Niña–like mean state, highlighting the possible role of water vapor shortwave absorptivity for shaping the mean-state climate patterns. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/JCLI-D-21-0417.1 |