Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7

The power conversion efficiencies (PCEs) of small molecule acceptor (SMA)‐based organic solar cells have already exceeded 18%. However, the development of polymer acceptors still lags far behind their SMA counterparts mainly due to the lack of efficient polymer acceptors. Herein, a series of polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-04, Vol.34 (14), p.e2110155-n/a
Hauptverfasser: Li, Yun, Song, Jiali, Dong, Yicai, Jin, Hui, Xin, Jingming, Wang, Shijie, Cai, Yunhao, Jiang, Lang, Ma, Wei, Tang, Zheng, Sun, Yanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The power conversion efficiencies (PCEs) of small molecule acceptor (SMA)‐based organic solar cells have already exceeded 18%. However, the development of polymer acceptors still lags far behind their SMA counterparts mainly due to the lack of efficient polymer acceptors. Herein, a series of polymer acceptors named PY‐X (with X being the branched alkyl chain) are designed and synthesized by employing the same central core with the SMA L8‐BO but with different branched alkyl chains on the pyrrole motif. It is found that the molecular packing of SMA‐HD featuring 2‐hexyldecyl side chain used in the synthesis of PY‐HD is similar to L8‐BO, in which the branched alkyl chains lead to condensed and high‐order molecular assembly in SMA‐HD molecules. When combined with PM6, PY‐HD‐based all polymer solar cell (all‐PSC) exhibits a high PCE of 16.41%, representing the highest efficiency for the binary all‐PSCs. Moreover, the side‐chain modification on the pyrrole site position further improves the performance of the all‐PSCs, and the PY‐DT‐based device delivers a new record high efficiency of 16.76% (certified as 16.3%). The work provides new insights for understanding the structure–property relationship of polymer acceptors and paves a feasible avenue to develop efficient conjugated polymer acceptors. A series of polymer acceptors named PY‐X have been synthesized. By optimizing the length of branched alkyl chains, PY‐HD (2‐hexyldecyl substitution)‐based all polymer solar cell (all‐PSC) delivers a high efficiency of 16.76%, with an open‐circuit voltage of 0.949 V, and an extremely low non‐radiative voltage loss of 0.18 V, representing the highest efficiency for binary all‐PSCs.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202110155