High-dimensional discrete Fourier transform gates with a quantum frequency processor

The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-03, Vol.30 (6), p.10126-10134
Hauptverfasser: Lu, Hsuan-Hao, Lingaraju, Navin B, Leaird, Daniel E, Weiner, Andrew M, Lukens, Joseph M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10134
container_issue 6
container_start_page 10126
container_title Optics express
container_volume 30
creator Lu, Hsuan-Hao
Lingaraju, Navin B
Leaird, Daniel E
Weiner, Andrew M
Lukens, Joseph M
description The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point frequency-bin DFTs can be realized with a fixed three-component quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals one radio-frequency harmonic per each incremental increase in d. We verify gate fidelity >0.9997 and success probability >0.965 up to d = 10 in numerical simulations, and experimentally implement the solution for d = 3, utilizing measurements with parallel DFTs to quantify entanglement and perform tomography of multiple two-photon frequency-bin states. Our results furnish new opportunities for high-dimensional frequency-bin protocols in quantum communications and networking.
doi_str_mv 10.1364/OE.454677
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1854381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641000071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e5b874fbcc1445f9d2066f380de258366fc3260dbad81ab4e6bcd1ef2d2e205f3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMotlYX_gEJrnQxmte8liKtCkI3ug6Z5KaNdCZtkkH6750yVbybcxYfh3MPQteUPFBeiMfl_EHkoijLEzSlpBaZIFV5-s9P0EWMX4RQUdblOZrwnNW1YHyKPl7dap0Z10IXne_UBhsXdYAEeOH74CDgFFQXrQ8tXqkEEX-7tMYK73rVpb7FNsCuh07v8TZ4DTH6cInOrNpEuDrqDH0u5h_Pr9n78uXt-ek901yUKYO8qUphG62pELmtDSNFYXlFDLC84oPXnBXENMpUVDUCikYbCpYZBozkls_Q7ZjrY3IyapdAr7XvOtBJ0ioXvKIDdDdCQ72haEyyHT6EzUZ14PsoWSEoGa48oPcjqoOPMYCV2-BaFfaSEnlYWi7nclx6YG-OsX3Tgvkjf6flP6yPeWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641000071</pqid></control><display><type>article</type><title>High-dimensional discrete Fourier transform gates with a quantum frequency processor</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lu, Hsuan-Hao ; Lingaraju, Navin B ; Leaird, Daniel E ; Weiner, Andrew M ; Lukens, Joseph M</creator><creatorcontrib>Lu, Hsuan-Hao ; Lingaraju, Navin B ; Leaird, Daniel E ; Weiner, Andrew M ; Lukens, Joseph M ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point frequency-bin DFTs can be realized with a fixed three-component quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals one radio-frequency harmonic per each incremental increase in d. We verify gate fidelity &gt;0.9997 and success probability &gt;0.965 up to d = 10 in numerical simulations, and experimentally implement the solution for d = 3, utilizing measurements with parallel DFTs to quantify entanglement and perform tomography of multiple two-photon frequency-bin states. Our results furnish new opportunities for high-dimensional frequency-bin protocols in quantum communications and networking.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.454677</identifier><identifier>PMID: 35299423</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>MATHEMATICS AND COMPUTING</subject><ispartof>Optics express, 2022-03, Vol.30 (6), p.10126-10134</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-e5b874fbcc1445f9d2066f380de258366fc3260dbad81ab4e6bcd1ef2d2e205f3</citedby><cites>FETCH-LOGICAL-c347t-e5b874fbcc1445f9d2066f380de258366fc3260dbad81ab4e6bcd1ef2d2e205f3</cites><orcidid>0000-0001-8036-1022 ; 0000-0003-4009-0787 ; 0000-0002-1334-8183 ; 0000-0001-9650-4462 ; 0000000180361022 ; 0000000213348183 ; 0000000340090787 ; 0000000196504462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35299423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1854381$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Hsuan-Hao</creatorcontrib><creatorcontrib>Lingaraju, Navin B</creatorcontrib><creatorcontrib>Leaird, Daniel E</creatorcontrib><creatorcontrib>Weiner, Andrew M</creatorcontrib><creatorcontrib>Lukens, Joseph M</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>High-dimensional discrete Fourier transform gates with a quantum frequency processor</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point frequency-bin DFTs can be realized with a fixed three-component quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals one radio-frequency harmonic per each incremental increase in d. We verify gate fidelity &gt;0.9997 and success probability &gt;0.965 up to d = 10 in numerical simulations, and experimentally implement the solution for d = 3, utilizing measurements with parallel DFTs to quantify entanglement and perform tomography of multiple two-photon frequency-bin states. Our results furnish new opportunities for high-dimensional frequency-bin protocols in quantum communications and networking.</description><subject>MATHEMATICS AND COMPUTING</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMotlYX_gEJrnQxmte8liKtCkI3ug6Z5KaNdCZtkkH6750yVbybcxYfh3MPQteUPFBeiMfl_EHkoijLEzSlpBaZIFV5-s9P0EWMX4RQUdblOZrwnNW1YHyKPl7dap0Z10IXne_UBhsXdYAEeOH74CDgFFQXrQ8tXqkEEX-7tMYK73rVpb7FNsCuh07v8TZ4DTH6cInOrNpEuDrqDH0u5h_Pr9n78uXt-ek901yUKYO8qUphG62pELmtDSNFYXlFDLC84oPXnBXENMpUVDUCikYbCpYZBozkls_Q7ZjrY3IyapdAr7XvOtBJ0ioXvKIDdDdCQ72haEyyHT6EzUZ14PsoWSEoGa48oPcjqoOPMYCV2-BaFfaSEnlYWi7nclx6YG-OsX3Tgvkjf6flP6yPeWw</recordid><startdate>20220314</startdate><enddate>20220314</enddate><creator>Lu, Hsuan-Hao</creator><creator>Lingaraju, Navin B</creator><creator>Leaird, Daniel E</creator><creator>Weiner, Andrew M</creator><creator>Lukens, Joseph M</creator><general>Optical Society of America (OSA)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8036-1022</orcidid><orcidid>https://orcid.org/0000-0003-4009-0787</orcidid><orcidid>https://orcid.org/0000-0002-1334-8183</orcidid><orcidid>https://orcid.org/0000-0001-9650-4462</orcidid><orcidid>https://orcid.org/0000000180361022</orcidid><orcidid>https://orcid.org/0000000213348183</orcidid><orcidid>https://orcid.org/0000000340090787</orcidid><orcidid>https://orcid.org/0000000196504462</orcidid></search><sort><creationdate>20220314</creationdate><title>High-dimensional discrete Fourier transform gates with a quantum frequency processor</title><author>Lu, Hsuan-Hao ; Lingaraju, Navin B ; Leaird, Daniel E ; Weiner, Andrew M ; Lukens, Joseph M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e5b874fbcc1445f9d2066f380de258366fc3260dbad81ab4e6bcd1ef2d2e205f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>MATHEMATICS AND COMPUTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hsuan-Hao</creatorcontrib><creatorcontrib>Lingaraju, Navin B</creatorcontrib><creatorcontrib>Leaird, Daniel E</creatorcontrib><creatorcontrib>Weiner, Andrew M</creatorcontrib><creatorcontrib>Lukens, Joseph M</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hsuan-Hao</au><au>Lingaraju, Navin B</au><au>Leaird, Daniel E</au><au>Weiner, Andrew M</au><au>Lukens, Joseph M</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-dimensional discrete Fourier transform gates with a quantum frequency processor</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2022-03-14</date><risdate>2022</risdate><volume>30</volume><issue>6</issue><spage>10126</spage><epage>10134</epage><pages>10126-10134</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point frequency-bin DFTs can be realized with a fixed three-component quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals one radio-frequency harmonic per each incremental increase in d. We verify gate fidelity &gt;0.9997 and success probability &gt;0.965 up to d = 10 in numerical simulations, and experimentally implement the solution for d = 3, utilizing measurements with parallel DFTs to quantify entanglement and perform tomography of multiple two-photon frequency-bin states. Our results furnish new opportunities for high-dimensional frequency-bin protocols in quantum communications and networking.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>35299423</pmid><doi>10.1364/OE.454677</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8036-1022</orcidid><orcidid>https://orcid.org/0000-0003-4009-0787</orcidid><orcidid>https://orcid.org/0000-0002-1334-8183</orcidid><orcidid>https://orcid.org/0000-0001-9650-4462</orcidid><orcidid>https://orcid.org/0000000180361022</orcidid><orcidid>https://orcid.org/0000000213348183</orcidid><orcidid>https://orcid.org/0000000340090787</orcidid><orcidid>https://orcid.org/0000000196504462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2022-03, Vol.30 (6), p.10126-10134
issn 1094-4087
1094-4087
language eng
recordid cdi_osti_scitechconnect_1854381
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects MATHEMATICS AND COMPUTING
title High-dimensional discrete Fourier transform gates with a quantum frequency processor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-dimensional%20discrete%20Fourier%20transform%20gates%20with%20a%20quantum%20frequency%20processor&rft.jtitle=Optics%20express&rft.au=Lu,%20Hsuan-Hao&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-03-14&rft.volume=30&rft.issue=6&rft.spage=10126&rft.epage=10134&rft.pages=10126-10134&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.454677&rft_dat=%3Cproquest_osti_%3E2641000071%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641000071&rft_id=info:pmid/35299423&rfr_iscdi=true