High-dimensional discrete Fourier transform gates with a quantum frequency processor

The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-03, Vol.30 (6), p.10126-10134
Hauptverfasser: Lu, Hsuan-Hao, Lingaraju, Navin B, Leaird, Daniel E, Weiner, Andrew M, Lukens, Joseph M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show that d-point frequency-bin DFTs can be realized with a fixed three-component quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals one radio-frequency harmonic per each incremental increase in d. We verify gate fidelity >0.9997 and success probability >0.965 up to d = 10 in numerical simulations, and experimentally implement the solution for d = 3, utilizing measurements with parallel DFTs to quantify entanglement and perform tomography of multiple two-photon frequency-bin states. Our results furnish new opportunities for high-dimensional frequency-bin protocols in quantum communications and networking.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.454677