Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures

Strong interactions of electromagnetic fields with plasmonic nanomaterials have been exploited in various applications. These applications have centred on plasmon-enhanced scattering rates in nearby molecules or plasmon-induced heating. A question that has emerged recently is whether it is possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-07, Vol.20 (7), p.916-924
Hauptverfasser: Linic, Suljo, Chavez, Steven, Elias, Rachel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strong interactions of electromagnetic fields with plasmonic nanomaterials have been exploited in various applications. These applications have centred on plasmon-enhanced scattering rates in nearby molecules or plasmon-induced heating. A question that has emerged recently is whether it is possible to use plasmonic nanostructures in a range of hot electron (hole) applications, including photocatalysis, photovoltaics and photodetection. These applications require coupling of a plasmonic component, which amplifies the interaction of light with the material, to an attached non-plasmonic component that extracts this energy in the form of electronic excitations to perform a function. In this Perspective, we discuss recent work in the emerging field of hybrid plasmonics. We focus on fundamental questions related to the nanoscopic flow of energy and excited charge carriers in these multicomponent materials. We also address critical misconceptions, challenges and opportunities that require more attention. Recent developments in the emerging field of hybrid plasmonics focusing on fundamental aspects related to nanoscopic flow of energy and excited charge carriers in these multicomponent materials and their potential applications are now discussed.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-020-00858-4