Electron and hole mobility of rutile GeO2 from first principles: An ultrawide-bandgap semiconductor for power electronics

Rutile germanium dioxide (r-GeO2) is a recently predicted ultrawide-bandgap semiconductor with potential applications in high-power electronic devices, for which the carrier mobility is an important material parameter that controls the device efficiency. We apply first-principles calculations based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-11, Vol.117 (18), Article 182104
Hauptverfasser: Bushick, K., Mengle, K. A., Chae, S., Kioupakis, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rutile germanium dioxide (r-GeO2) is a recently predicted ultrawide-bandgap semiconductor with potential applications in high-power electronic devices, for which the carrier mobility is an important material parameter that controls the device efficiency. We apply first-principles calculations based on density functional and density functional perturbation theory to investigate carrier-phonon coupling in r-GeO2 and predict its phonon-limited electron and hole mobilities as a function of temperature and crystallographic orientation. The calculated carrier mobilities at 300 K are μ elec , ⊥ c → = 244 cm2 V−1 s−1, μ elec , ∥ c → = 377 cm2 V−1 s−1, μ hole , ⊥ c → = 27 cm2 V−1 s−1, and μ hole , ∥ c → = 29 cm2 V−1 s−1. At room temperature, carrier scattering is dominated by the low-frequency polar-optical phonon modes. The predicted Baliga figure of merit of n-type r-GeO2 surpasses several incumbent semiconductors such as Si, SiC, GaN, and β-Ga2O3, demonstrating its superior performance in high-power electronic devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0033284