Conformal field theories are magical

"Magic" is the degree to which a state cannot be approximated by Clifford gates. We study mana, a measure of magic, in the ground state of the Z3 Potts model, and argue that it is a broadly useful diagnostic for many-body physics. In particular we find that the q=3 ground state has large m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-02, Vol.103 (7), p.1, Article 075145
Hauptverfasser: White, Christopher David, Cao, ChunJun, Swingle, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title Physical review. B
container_volume 103
creator White, Christopher David
Cao, ChunJun
Swingle, Brian
description "Magic" is the degree to which a state cannot be approximated by Clifford gates. We study mana, a measure of magic, in the ground state of the Z3 Potts model, and argue that it is a broadly useful diagnostic for many-body physics. In particular we find that the q=3 ground state has large mana at the model's critical point, and that this mana resides in the system's correlations. We explain the form of the mana by a simple tensor-counting calculation based on a MERA representation of the state. Because mana is present at all length scales, we conclude that the conformal field theory describing the three-state Potts model critical point is magical. These results control the difficulty of preparing the Potts ground state on an error-corrected quantum computer and constrain tensor network models of AdS-CFT.
doi_str_mv 10.1103/PhysRevB.103.075145
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495503027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c1882cf4761e83996a1132c215b589e569950a92df2f4f64acfa02d22c6f00693</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouKz7C7wU9do6k682R138ggVF9Bximrhdus2adIX997ZUPc288DDz8hByjlAgArt-WR_Sq_u-LYZQQCmQiyMyo1yqXCmpjv93AadkkdIGAFCCKkHNyNUydD7ErWkz37i2zvq1C7FxKTPRZVvz2VjTnpETb9rkFr9zTt7v796Wj_nq-eFpebPKLeOqzy1WFbWelxJdxYbfBpFRS1F8iEo5IccKRtHaU8-95MZ6A7Sm1EoPIBWbk4vpbkh9o5NtemfXNnSds73GSjDkfIAuJ2gXw9fepV5vwj52Qy9NuRICGNByoNhE2RhSis7rXWy2Jh40gh616T9tegyTNvYDu9te0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495503027</pqid></control><display><type>article</type><title>Conformal field theories are magical</title><source>American Physical Society Journals</source><creator>White, Christopher David ; Cao, ChunJun ; Swingle, Brian</creator><creatorcontrib>White, Christopher David ; Cao, ChunJun ; Swingle, Brian ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>"Magic" is the degree to which a state cannot be approximated by Clifford gates. We study mana, a measure of magic, in the ground state of the Z3 Potts model, and argue that it is a broadly useful diagnostic for many-body physics. In particular we find that the q=3 ground state has large mana at the model's critical point, and that this mana resides in the system's correlations. We explain the form of the mana by a simple tensor-counting calculation based on a MERA representation of the state. Because mana is present at all length scales, we conclude that the conformal field theory describing the three-state Potts model critical point is magical. These results control the difficulty of preparing the Potts ground state on an error-corrected quantum computer and constrain tensor network models of AdS-CFT.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.075145</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>1-dimensional spin chains ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Conformal field theory ; Critical phenomena ; Critical point ; Density matrix renormalization group ; Error correction ; Field theory ; Ground state ; Materials science ; Mathematical analysis ; Physics ; Quantum computers ; Quantum correlations in quantum information ; Quantum phase transitions ; Quantum simulation ; Tensors</subject><ispartof>Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075145</ispartof><rights>Copyright American Physical Society Feb 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c1882cf4761e83996a1132c215b589e569950a92df2f4f64acfa02d22c6f00693</citedby><cites>FETCH-LOGICAL-c349t-c1882cf4761e83996a1132c215b589e569950a92df2f4f64acfa02d22c6f00693</cites><orcidid>0000-0002-8372-2492 ; 0000000283722492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1853144$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Christopher David</creatorcontrib><creatorcontrib>Cao, ChunJun</creatorcontrib><creatorcontrib>Swingle, Brian</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Conformal field theories are magical</title><title>Physical review. B</title><description>"Magic" is the degree to which a state cannot be approximated by Clifford gates. We study mana, a measure of magic, in the ground state of the Z3 Potts model, and argue that it is a broadly useful diagnostic for many-body physics. In particular we find that the q=3 ground state has large mana at the model's critical point, and that this mana resides in the system's correlations. We explain the form of the mana by a simple tensor-counting calculation based on a MERA representation of the state. Because mana is present at all length scales, we conclude that the conformal field theory describing the three-state Potts model critical point is magical. These results control the difficulty of preparing the Potts ground state on an error-corrected quantum computer and constrain tensor network models of AdS-CFT.</description><subject>1-dimensional spin chains</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Conformal field theory</subject><subject>Critical phenomena</subject><subject>Critical point</subject><subject>Density matrix renormalization group</subject><subject>Error correction</subject><subject>Field theory</subject><subject>Ground state</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Quantum computers</subject><subject>Quantum correlations in quantum information</subject><subject>Quantum phase transitions</subject><subject>Quantum simulation</subject><subject>Tensors</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouKz7C7wU9do6k682R138ggVF9Bximrhdus2adIX997ZUPc288DDz8hByjlAgArt-WR_Sq_u-LYZQQCmQiyMyo1yqXCmpjv93AadkkdIGAFCCKkHNyNUydD7ErWkz37i2zvq1C7FxKTPRZVvz2VjTnpETb9rkFr9zTt7v796Wj_nq-eFpebPKLeOqzy1WFbWelxJdxYbfBpFRS1F8iEo5IccKRtHaU8-95MZ6A7Sm1EoPIBWbk4vpbkh9o5NtemfXNnSds73GSjDkfIAuJ2gXw9fepV5vwj52Qy9NuRICGNByoNhE2RhSis7rXWy2Jh40gh616T9tegyTNvYDu9te0g</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>White, Christopher David</creator><creator>Cao, ChunJun</creator><creator>Swingle, Brian</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8372-2492</orcidid><orcidid>https://orcid.org/0000000283722492</orcidid></search><sort><creationdate>20210225</creationdate><title>Conformal field theories are magical</title><author>White, Christopher David ; Cao, ChunJun ; Swingle, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c1882cf4761e83996a1132c215b589e569950a92df2f4f64acfa02d22c6f00693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-dimensional spin chains</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Conformal field theory</topic><topic>Critical phenomena</topic><topic>Critical point</topic><topic>Density matrix renormalization group</topic><topic>Error correction</topic><topic>Field theory</topic><topic>Ground state</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Quantum computers</topic><topic>Quantum correlations in quantum information</topic><topic>Quantum phase transitions</topic><topic>Quantum simulation</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Christopher David</creatorcontrib><creatorcontrib>Cao, ChunJun</creatorcontrib><creatorcontrib>Swingle, Brian</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Christopher David</au><au>Cao, ChunJun</au><au>Swingle, Brian</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal field theories are magical</atitle><jtitle>Physical review. B</jtitle><date>2021-02-25</date><risdate>2021</risdate><volume>103</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>075145</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>"Magic" is the degree to which a state cannot be approximated by Clifford gates. We study mana, a measure of magic, in the ground state of the Z3 Potts model, and argue that it is a broadly useful diagnostic for many-body physics. In particular we find that the q=3 ground state has large mana at the model's critical point, and that this mana resides in the system's correlations. We explain the form of the mana by a simple tensor-counting calculation based on a MERA representation of the state. Because mana is present at all length scales, we conclude that the conformal field theory describing the three-state Potts model critical point is magical. These results control the difficulty of preparing the Potts ground state on an error-corrected quantum computer and constrain tensor network models of AdS-CFT.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.075145</doi><orcidid>https://orcid.org/0000-0002-8372-2492</orcidid><orcidid>https://orcid.org/0000000283722492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-02, Vol.103 (7), p.1, Article 075145
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1853144
source American Physical Society Journals
subjects 1-dimensional spin chains
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Conformal field theory
Critical phenomena
Critical point
Density matrix renormalization group
Error correction
Field theory
Ground state
Materials science
Mathematical analysis
Physics
Quantum computers
Quantum correlations in quantum information
Quantum phase transitions
Quantum simulation
Tensors
title Conformal field theories are magical
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20field%20theories%20are%20magical&rft.jtitle=Physical%20review.%20B&rft.au=White,%20Christopher%20David&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2021-02-25&rft.volume=103&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=075145&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.075145&rft_dat=%3Cproquest_osti_%3E2495503027%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495503027&rft_id=info:pmid/&rfr_iscdi=true