s–p Mixing in Stereochemically Active Lone Pairs Drives the Formation of 1D Chains of Lead Bromide Square Pyramids

In lead­(II) halide compounds including virtually all lead halide perovskites, the Pb2+ 6s lone pair results in distorted octahedra, in accordance with the pseudo-Jahn–Teller effect, rather than generating hemihedral coordination polyhedra. Here, in contrast, we report the characterization of an org...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-09, Vol.60 (17), p.12676-12680
Hauptverfasser: Straus, Daniel B, Mitchell Warden, Hillary E, Cava, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In lead­(II) halide compounds including virtually all lead halide perovskites, the Pb2+ 6s lone pair results in distorted octahedra, in accordance with the pseudo-Jahn–Teller effect, rather than generating hemihedral coordination polyhedra. Here, in contrast, we report the characterization of an organic–inorganic hybrid material consisting of one-dimensional edge-sharing chains of Pb–Br square pyramids, separated by [Mn­(DMF)6]2+ (DMF = dimethylformamide) octahedra. Molecular orbital analysis and density-functional theory calculations indicate that square pyramidal coordination about Pb2+ results from the occupancy of the empty ligand site by a Pb2+ lone pair that has both s and p orbital character rather than the exclusively 6s lone pair. These results demonstrate that a Pb2+ lone pair can be exploited to behave like a ligand in lead halide compounds, greatly expanding the realm of possible lead halide materials to include extended solids with nonoctahedral coordination environments.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.1c01277