Humidity-Dependent Viscosity of Secondary Organic Aerosol from Ozonolysis of β‑Caryophyllene: Measurements, Predictions, and Implications
To predict important secondary organic aerosol (SOA) properties, information on viscosity or diffusion rates within SOA is needed. Ozonolysis of β-caryophyllene is an important SOA source; however, very few viscosity or diffusion rate measurements have been performed for this SOA type and none as a...
Gespeichert in:
Veröffentlicht in: | ACS earth and space chemistry 2021-02, Vol.5 (2), p.305-318 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To predict important secondary organic aerosol (SOA) properties, information on viscosity or diffusion rates within SOA is needed. Ozonolysis of β-caryophyllene is an important SOA source; however, very few viscosity or diffusion rate measurements have been performed for this SOA type and none as a function of relative humidity (RH). In this study, we measured viscosity as a function of RH for SOA generated from the ozonolysis of β-caryophyllene using the poke-flow technique. At an RH of 0 and 48%, the viscosity was between 6.9 × 105 and 2.4 × 107 Pa s, and between 1.3 × 103 and 5.6 × 104 Pa s, respectively. Based on these viscosities and the fractional Stokes–Einstein equation, characteristic mixing timescales of organics within 200 nm β-caryophyllene SOA particles range from ∼0.2 h at 0% RH to |
---|---|
ISSN: | 2472-3452 2472-3452 |
DOI: | 10.1021/acsearthspacechem.0c00296 |