Effects of moisture and physical disturbance on pore-scale oxygen content and anaerobic metabolisms in upland soils

Soils are the largest dynamic stock of carbon (C) on Earth, and microbial respiration of soil organic C accounts for over 25% of global carbon dioxide (CO2) emissions. Zones of oxygen depletion in upland soils (anaerobic microsites) are increasingly recognized as an important control on soil microbi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-08, Vol.780 (C), p.146572-146572, Article 146572
Hauptverfasser: Lacroix, Emily M., Rossi, Robert J., Bossio, Deborah, Fendorf, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soils are the largest dynamic stock of carbon (C) on Earth, and microbial respiration of soil organic C accounts for over 25% of global carbon dioxide (CO2) emissions. Zones of oxygen depletion in upland soils (anaerobic microsites) are increasingly recognized as an important control on soil microbial respiration rates, but the factors governing the volume and distribution of anaerobic microsites are relatively unknown. We measured the dissolved oxygen (DO) content of porewater from incubated soil cores of varying moisture contents (80% water saturation) and degrees of disturbance (undisturbed, conventionally tilled, and physically disturbed). Porewater was extracted sequentially from pores constrained by three effective pore diameters, ≥3.0 μm, 3.0–1.0 μm, and 1.0–0.6 μm, from cores incubated for 7, 14, or 28 days, using a modified Tempe cell extraction system. We observed a parabolic pattern in mean dissolved oxygen (DO) concentrations across pore sizes, independent of soil moisture and degree of disturbance. Specifically, DO values within the largest and smallest pore domains were relatively depleted (155 ± 10 μM and 160 ± 11 μM, respectively), while DO values within medium pores were closer to saturation (214 ± 8 μM). The observed DO pattern provides insight into the balance of microbial oxygen demand versus oxygen supply across pore domains within upland soils. Additionally, we observed iron and manganese reduction in all soils except samples subjected to disturbance and incubated at
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.146572