Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime

In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight D_{s}, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a nonzero Chern number or frag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-01, Vol.126 (2), p.027002-027002, Article 027002
Hauptverfasser: Peri, Valerio, Song, Zhi-Da, Bernevig, B Andrei, Huber, Sebastian D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 027002
container_issue 2
container_start_page 027002
container_title Physical review letters
container_volume 126
creator Peri, Valerio
Song, Zhi-Da
Bernevig, B Andrei
Huber, Sebastian D
description In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight D_{s}, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a nonzero Chern number or fragile topology sets a lower bound for D_{s}, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we numerically use exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. Then, we investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.
doi_str_mv 10.1103/physrevlett.126.027002
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1852154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481218676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-59a4a572d451e28690d3493ea5fb0a5c2fc55fd5774d94a68522521b764032e03</originalsourceid><addsrcrecordid>eNpdkU1v2zAMQIVhw5p2-wuFsV12cUZ9WfZxC5Z1QNAWbXcWFJl2VDiWJ8kB8u-nIN0O5YU8PBIkHyHXFJaUAv867Y4x4GHAlJaUVUtgCoC9IQsKqikVpeItWQBwWjYA6oJcxvgMABmt35MLziVlORbkdh1M7wYsnvzkB98fCzO2xXowqfx-qh7nCYP1Yzvb5A4uHQs3FmmHxWMKfuzLlZ-nwY198YC92-MH8q4zQ8SPL_mK_F7_eFrdlJu7n79W3zalFbVMpWyMMFKxVkiKrK4aaLloOBrZbcFIyzorZddKpUTbCFPVkjHJ6FZVAjhD4Ffk03muj8npaF1Cu8trjmiTphmnUmToyxmagv8zY0x676LFYTAj-jlqJmpe00Y1LKOfX6HPfg5jPuFEUUbrSlWZqs6UDT7m93d6Cm5vwlFT0Cct-j5recDDJmvR-df6rCU3Xr-Mn7d7bP-3_fPA_wK1dIml</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481218676</pqid></control><display><type>article</type><title>Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Peri, Valerio ; Song, Zhi-Da ; Bernevig, B Andrei ; Huber, Sebastian D</creator><creatorcontrib>Peri, Valerio ; Song, Zhi-Da ; Bernevig, B Andrei ; Huber, Sebastian D ; Princeton Univ., NJ (United States)</creatorcontrib><description>In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight D_{s}, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a nonzero Chern number or fragile topology sets a lower bound for D_{s}, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we numerically use exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. Then, we investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.126.027002</identifier><identifier>PMID: 33512222</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>2-dimensional systems ; bilayer films ; Bilayers ; BKT transition ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Fluids ; Graphene ; Hubbard model ; Lower bounds ; Monte Carlo methods ; Phase transitions ; physics ; Robustness (mathematics) ; strongly correlated systems ; Superconductivity ; superconductors ; Superfluidity ; topological phases of matter ; Topology ; Transition temperature</subject><ispartof>Physical review letters, 2021-01, Vol.126 (2), p.027002-027002, Article 027002</ispartof><rights>Copyright American Physical Society Jan 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-59a4a572d451e28690d3493ea5fb0a5c2fc55fd5774d94a68522521b764032e03</citedby><cites>FETCH-LOGICAL-c485t-59a4a572d451e28690d3493ea5fb0a5c2fc55fd5774d94a68522521b764032e03</cites><orcidid>0000-0002-0727-3808 ; 0000-0003-3558-351X ; 000000033558351X ; 0000000207273808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33512222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1852154$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peri, Valerio</creatorcontrib><creatorcontrib>Song, Zhi-Da</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><creatorcontrib>Huber, Sebastian D</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight D_{s}, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a nonzero Chern number or fragile topology sets a lower bound for D_{s}, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we numerically use exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. Then, we investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.</description><subject>2-dimensional systems</subject><subject>bilayer films</subject><subject>Bilayers</subject><subject>BKT transition</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Fluids</subject><subject>Graphene</subject><subject>Hubbard model</subject><subject>Lower bounds</subject><subject>Monte Carlo methods</subject><subject>Phase transitions</subject><subject>physics</subject><subject>Robustness (mathematics)</subject><subject>strongly correlated systems</subject><subject>Superconductivity</subject><subject>superconductors</subject><subject>Superfluidity</subject><subject>topological phases of matter</subject><subject>Topology</subject><subject>Transition temperature</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v2zAMQIVhw5p2-wuFsV12cUZ9WfZxC5Z1QNAWbXcWFJl2VDiWJ8kB8u-nIN0O5YU8PBIkHyHXFJaUAv867Y4x4GHAlJaUVUtgCoC9IQsKqikVpeItWQBwWjYA6oJcxvgMABmt35MLziVlORbkdh1M7wYsnvzkB98fCzO2xXowqfx-qh7nCYP1Yzvb5A4uHQs3FmmHxWMKfuzLlZ-nwY198YC92-MH8q4zQ8SPL_mK_F7_eFrdlJu7n79W3zalFbVMpWyMMFKxVkiKrK4aaLloOBrZbcFIyzorZddKpUTbCFPVkjHJ6FZVAjhD4Ffk03muj8npaF1Cu8trjmiTphmnUmToyxmagv8zY0x676LFYTAj-jlqJmpe00Y1LKOfX6HPfg5jPuFEUUbrSlWZqs6UDT7m93d6Cm5vwlFT0Cct-j5recDDJmvR-df6rCU3Xr-Mn7d7bP-3_fPA_wK1dIml</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Peri, Valerio</creator><creator>Song, Zhi-Da</creator><creator>Bernevig, B Andrei</creator><creator>Huber, Sebastian D</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0727-3808</orcidid><orcidid>https://orcid.org/0000-0003-3558-351X</orcidid><orcidid>https://orcid.org/000000033558351X</orcidid><orcidid>https://orcid.org/0000000207273808</orcidid></search><sort><creationdate>20210114</creationdate><title>Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime</title><author>Peri, Valerio ; Song, Zhi-Da ; Bernevig, B Andrei ; Huber, Sebastian D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-59a4a572d451e28690d3493ea5fb0a5c2fc55fd5774d94a68522521b764032e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2-dimensional systems</topic><topic>bilayer films</topic><topic>Bilayers</topic><topic>BKT transition</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Fluids</topic><topic>Graphene</topic><topic>Hubbard model</topic><topic>Lower bounds</topic><topic>Monte Carlo methods</topic><topic>Phase transitions</topic><topic>physics</topic><topic>Robustness (mathematics)</topic><topic>strongly correlated systems</topic><topic>Superconductivity</topic><topic>superconductors</topic><topic>Superfluidity</topic><topic>topological phases of matter</topic><topic>Topology</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peri, Valerio</creatorcontrib><creatorcontrib>Song, Zhi-Da</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><creatorcontrib>Huber, Sebastian D</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peri, Valerio</au><au>Song, Zhi-Da</au><au>Bernevig, B Andrei</au><au>Huber, Sebastian D</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>126</volume><issue>2</issue><spage>027002</spage><epage>027002</epage><pages>027002-027002</pages><artnum>027002</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight D_{s}, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a nonzero Chern number or fragile topology sets a lower bound for D_{s}, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we numerically use exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. Then, we investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33512222</pmid><doi>10.1103/physrevlett.126.027002</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0727-3808</orcidid><orcidid>https://orcid.org/0000-0003-3558-351X</orcidid><orcidid>https://orcid.org/000000033558351X</orcidid><orcidid>https://orcid.org/0000000207273808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-01, Vol.126 (2), p.027002-027002, Article 027002
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1852154
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects 2-dimensional systems
bilayer films
Bilayers
BKT transition
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Fluids
Graphene
Hubbard model
Lower bounds
Monte Carlo methods
Phase transitions
physics
Robustness (mathematics)
strongly correlated systems
Superconductivity
superconductors
Superfluidity
topological phases of matter
Topology
Transition temperature
title Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fragile%20Topology%20and%20Flat-Band%20Superconductivity%20in%20the%20Strong-Coupling%20Regime&rft.jtitle=Physical%20review%20letters&rft.au=Peri,%20Valerio&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2021-01-14&rft.volume=126&rft.issue=2&rft.spage=027002&rft.epage=027002&rft.pages=027002-027002&rft.artnum=027002&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.126.027002&rft_dat=%3Cproquest_osti_%3E2481218676%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481218676&rft_id=info:pmid/33512222&rfr_iscdi=true