Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime

In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight D_{s}, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a nonzero Chern number or frag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-01, Vol.126 (2), p.027002-027002, Article 027002
Hauptverfasser: Peri, Valerio, Song, Zhi-Da, Bernevig, B Andrei, Huber, Sebastian D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In flat bands, superconductivity can lead to surprising transport effects. The superfluid "mobility", in the form of the superfluid weight D_{s}, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a nonzero Chern number or fragile topology sets a lower bound for D_{s}, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we numerically use exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. Then, we investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.126.027002