Recrystallization suppression through dispersion-strengthening of tungsten

Tungsten is the material of choice for the divertor region of future nuclear fusion reactors, an environment that will expose plasma-facing components (e.g. divertor, etc...) to high temperatures and transient high heat flux events. Under these conditions, recrystallization and grain growth of tungs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-11, Vol.545 (C)
Hauptverfasser: Lang, E., Schamis, H., Madden, N., Smith, C., Kolasinski, R., Krogstad, J., Allain, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tungsten is the material of choice for the divertor region of future nuclear fusion reactors, an environment that will expose plasma-facing components (e.g. divertor, etc...) to high temperatures and transient high heat flux events. Under these conditions, recrystallization and grain growth of tungsten can occur, leading to undesirable microstructural and mechanical property changes. Therefore, there is a need to raise the recrystallization temperature of tungsten and limit the kinetics of the recrystallization and grain growth processes. In this work, we examine the effect of different types (TiC vs. TaC vs. ZrC) and different concentrations (1.1 vs. 5 vs. 10 wt.%) of dispersed second phase particles in a tungsten matrix on the high temperature performance. Additionally, the addition of second-phase particles effectively increases the temperature of and time for recrystallization and slow grain growth; however, the addition of a high weight fraction of particles alters the surface chemistry, which may impact subsequent plasma-surface interactions. These results show that the addition of small concentrations of dispersed particles can be effectively employed in tungsten to raise the upper operating temperature limit for tungsten in a fusion reactor.
ISSN:0022-3115
1873-4820