Measurement of free chlorine levels in water using potentiometric responses of biofilms and applications for monitoring and managing the quality of potable water

We report residual free chlorine is not monitored continuously at scale in drinking water distribution systems because existing real-time sensor technologies require frequent maintenance, cleaning, and calibration, which makes these products too costly to be used throughout a distribution system. As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-12, Vol.766 (C)
Hauptverfasser: Saboe, Daniel, Hristovski, Kiril D., Burge, Scott R., Burge, Russell G., Taylor, Evan, Hoffman, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report residual free chlorine is not monitored continuously at scale in drinking water distribution systems because existing real-time sensor technologies require frequent maintenance, cleaning, and calibration, which makes these products too costly to be used throughout a distribution system. As a result, current measurement approaches require manual sampling, which is not feasible for the consistent monitoring of free chlorine because chlorine concentrations vary significantly throughout pipeline distribution and over time and space. This research presents an alternative and cost-effective method of predicting free chlorine levels in drinking water using graphite electrodes coated with naturally grown microbial biofilms. This Microbial Potentiometric Sensor (MPS) array was installed in a Continuously Mixed Batch Reactor (CMBR), and drinking water containing variable free chlorine concentrations. The chlorine concentrations were introduced in a controlled manner, and the MPS signals were monitored over time. MPS signals were measured from the change in Open Circuit Potential (OCP) across the MPS array in real-time. An empirically derived relationship between the normalized change in OCP and free chlorine was established by fitting individual and average MPS data to a decaying exponential growth function in order to predict free chlorine levels. The results show that free chlorine can be predicted with reasonable accuracy, with model validation showing an average absolute error of ±0.09 ppm below 1.1 ppm and ±0.30 ppm between 1.1 and 2.7 ppm. However, the accuracy of predictions was reduced at higher free chlorine levels. The researchers conclude that MPS systems may benefit drinking water distribution systems by measuring free chlorine. These advantages of the MPS are especially pronounced in the developing world because this system is inexpensive and does not require routine maintenance or cleaning. The system relies on a naturally forming and regenerating biofilm and an inexpensive potentiometric meter to produce stable measurements.
ISSN:0048-9697
1879-1026