Self-stabilizing exchange-mediated spin transport

Long-range spin transport in magnetic systems can be achieved by means of exchange-mediated spin textures with robust topological winding, a phenomenon referred to as spin superfluidity. Its experimental signatures have been discussed in antiferromagnets, which are nearly free of dipolar interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-04, Vol.103 (14), Article 144412
Hauptverfasser: Schneider, T., Hill, D., Kákay, A., Lenz, K., Lindner, J., Fassbender, J., Upadhyaya, P., Liu, Yuxiang, Wang, Kang, Tserkovnyak, Y., Krivorotov, I. N., Barsukov, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-range spin transport in magnetic systems can be achieved by means of exchange-mediated spin textures with robust topological winding, a phenomenon referred to as spin superfluidity. Its experimental signatures have been discussed in antiferromagnets, which are nearly free of dipolar interaction. However, in ferromagnets, which possess non-negligible dipole fields, realization of such spin transport has remained a challenge. Using micromagnetic simulations, we investigate coherent exchange-mediated spin transport in extended thin ferromagnetic films. We uncover a two-fluid state in which the long-range spin transport by spin textures coexists with spin waves, as well as a soliton-screened spin transport regime at high spin injection biases. Both states are associated with distinct spin texture reconstructions near the spin injection region and sustain spin transport over large distances.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.103.144412