Unraveling Nanoscale Cobalt Oxide Catalysts for the Oxygen Evolution Reaction: Maximum Performance, Minimum Effort
The oxygen evolution reaction (OER) is a key bottleneck step of artificial photosynthesis and an essential topic in renewable energy research. Therefore, stable, efficient, and economical water oxidation catalysts (WOCs) are in high demand and cobalt-based nanomaterials are promising targets. Herein...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-09, Vol.143 (37), p.15022-15038 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The oxygen evolution reaction (OER) is a key bottleneck step of artificial photosynthesis and an essential topic in renewable energy research. Therefore, stable, efficient, and economical water oxidation catalysts (WOCs) are in high demand and cobalt-based nanomaterials are promising targets. Herein, we tackle two key open questions after decades of research into cobalt-assisted visible-light-driven water oxidation: What makes simple cobalt-based precipitates so highly activeand to what extent do we need Co-WOC design? Hence, we started from Co(NO3)2 to generate a precursor precipitate, which transforms into a highly active WOC during the photocatalytic process with a [Ru(bpy)3]2+/S2O8 2–/borate buffer standard assay that outperforms state of the art cobalt catalysts. The structural transformations of these nanosized Co catalysts were monitored with a wide range of characterization techniques. The results reveal that the precipitated catalyst does not fully change into an amorphous CoO x material but develops some crystalline features. The transition from the precipitate into a disordered Co3O4 material proceeds within ca. 1 min, followed by further transformation into highly active disordered CoOOH within the first 10 min. Furthermore, under noncatalytic conditions, the precursor directly transforms into CoOOH. Moreover, fast precipitation and isolation afford a highly active precatalyst with an exceptional O2 yield of 91% for water oxidation with the visible-light-driven [Ru(bpy)3]2+/S2O8 2– assay, which outperforms a wide range of carefully designed Co-containing WOCs. We thus demonstrate that high-performance cobalt-based OER catalysts indeed emerge effortlessly from a self-optimization process favoring the formation of Co(III) centers in all-octahedral environments. This paves the way to new low-maintenance flow chemistry OER processes. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.1c03375 |