Characterization of high-purity germanium (Ge) crystals for developing novel Ge detectors
High-purity germanium (HPGe) crystals are required to be well-characterized before being fabricated into Ge detectors. The characterization of HPGe crystals is often performed with the Hall Effect system, which measures the net carrier concentration, the Hall mobility, and the electrical resistivity...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2020-10, Vol.15 (10), p.T10010-T10010 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-purity germanium (HPGe) crystals are required to be well-characterized before being fabricated into Ge detectors. The characterization of HPGe crystals is often performed with the Hall Effect system, which measures the net carrier concentration, the Hall mobility, and the electrical resistivity. The reported values have a strong dependence on the size of the ohmic contacts and the geometry of the samples used in conducting the Hall Effect measurements. We conduct a systematic study using four samples cut from the same location in a HPGe crystal made into different sized ohmic contacts or different geometries to study the variation of the measured parameters from the Hall Effect system. The results are compared to the C-V measurements provided by the Ge detector made from the same crystal. We report the systematic errors involved with the Hall Effect system and find a reliable technique that minimizes the systematic error to be only a few percent from the Hall Effect measurements. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/15/10/T10010 |