Time-Domain Line-Shape Analysis from 2D Spectroscopy to Precisely Determine Hamiltonian Parameters for a Photosynthetic Complex

Optical signals come from coherences between quantum states, with spectral line widths determined by the coherences’ dephasing dynamics. Using a 2D electronic spectrometer, we observe weak coherence- and rephasing-time-domain signals persisting to 1 ps in the Fenna–Matthews–Olson complex at 77 K. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-03, Vol.125 (11), p.2812-2820
Hauptverfasser: Rolczynski, Brian S, Yeh, Shu-Hao, Navotnaya, Polina, Lloyd, Lawson T, Ginzburg, Alan R, Zheng, Haibin, Allodi, Marco A, Otto, John P, Ashraf, Khuram, Gardiner, Alastair T, Cogdell, Richard J, Kais, Sabre, Engel, Gregory S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical signals come from coherences between quantum states, with spectral line widths determined by the coherences’ dephasing dynamics. Using a 2D electronic spectrometer, we observe weak coherence- and rephasing-time-domain signals persisting to 1 ps in the Fenna–Matthews–Olson complex at 77 K. These are coherences between the ground and excited states prepared after the complex interacts once or three times with light, rather than zero-quantum coherences that are more frequently investigated following two interactions. Here, we use these small but persistent signal components to isolate spectral contributions with narrowed peaks and reveal the system’s eigenenergies.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.0c08012