Dimethylcarbene versus Direct Propene Formation in Dimethylketene Photodissociation

Highly reactive carbenes are usually produced by photolysis of ketenes, diazoalkanes, or diazirines. Sequential kinetic pathways for deactivation of nascent carbenes usually involve bimolecular reactions in competition with isomerization producing stable products such as alkenes. However, the direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-08, Vol.125 (32), p.6940-6948
Hauptverfasser: Datta, Sagnik, Davis, H. Floyd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highly reactive carbenes are usually produced by photolysis of ketenes, diazoalkanes, or diazirines. Sequential kinetic pathways for deactivation of nascent carbenes usually involve bimolecular reactions in competition with isomerization producing stable products such as alkenes. However, the direct photolytic production of stable products, effectively bypassing formation of free carbenes, has been postulated for over 50 years but remains very poorly understood. Often termed “rearrangement in the excited state” (RIES), examples include 1,2-hydrogen migration within photoexcited carbene precursors yielding alkenes and the Wolff rearrangement in photogenerated carbonyl-substituted carbenes producing ketenes. In this study, the two competing CO elimination channels from photoexcited gaseous dimethylketene, producing dimethylcarbene and propene, were studied as a function of electronic excitation energy, under collision-free conditions, by using photofragment translational energy spectroscopy with vacuum ultraviolet photoionization of the products. A significant fraction of the dimethylcarbene → propene isomerization exothermicity (∼300 kJ/mol) was released as propene + CO translational energy, indicating that propene is formed prior to or concurrent with CO elimination. An increase in the propene yield with increasing excitation energy suggests that the effective potential energy barrier for this channel lies ∼24 kJ/mol above the energetic threshold for dimethylcarbene formation via CC bond fission. Possible mechanisms for direct propene elimination are discussed in light of the observed energy dependence for the competing pathways.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.1c03641