Effect of Ligand Polarity on the Internal Dipoles and Ferroelectric Distortion in BaTiO3 Nanocubes

Surface adsorbates and surrounding matrix species have been demonstrated to affect the properties of nanoscale ferroelectrics and nanoscale ferroelectric composites; potentially counteracting performance losses that can occur in small particle sizes. In this work, the effects of nonpolar oleic acid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2021-06, Vol.27 (32), p.8365-8371
Hauptverfasser: Jiang, Bo, Usher, Tedi‐Marie, Jothi, Palani Raja, Kavey, Benard, Caruntu, Gabriel, Page, Katharine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface adsorbates and surrounding matrix species have been demonstrated to affect the properties of nanoscale ferroelectrics and nanoscale ferroelectric composites; potentially counteracting performance losses that can occur in small particle sizes. In this work, the effects of nonpolar oleic acid (OA) and polar tetrafluoroborate (BF4−) ligand capping on the surface of various sizes of BaTiO3 nanocubes have been investigated with combined neutron diffraction and neutron pair distribution function (PDF), density functional theory (DFT), and ab initio molecular dynamics (AIMD) methods. The low real space PDF region provides an unobstructed view of rhombohedral (split short and long) Ti−O distances in BaTiO3 nanocubes, mimicking the well‐established order‐disorder local structure found in bulk BaTiO3. Interestingly, the intermediate‐range order in nanocubes is found to be orthorhombic, rather than tetragonal. It is concluded that polar ligands adsorbed at BaTiO3 surfaces stabilize the correlation length scale of local rhombohedral distortions in ferroelectric nanoparticles relative to nonpolar ligands. Surface of BaTiO3 nanocubes covered with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF4−) capping ligands, derived from atomistic modelling of neutron PDF data.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.202100692