Local ordering in disordered NdxZr1-xO2-0.5x pyrochlore as observed using neutron total scattering
Pyrochlore complex oxides (A2B2O7) are an important class of fluorite-derivative ceramics with exceptional chemical and structural versatility which make them ideal model systems for studying disordering mechanisms over a range of spatial scales. Here, neutron total scattering methods were used to a...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2021-12, Vol.225 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pyrochlore complex oxides (A2B2O7) are an important class of fluorite-derivative ceramics with exceptional chemical and structural versatility which make them ideal model systems for studying disordering mechanisms over a range of spatial scales. Here, neutron total scattering methods were used to analyze the structural behavior in the non-stoichiometric series NdxZr1-xO2-0.5x (0.5 ≤ x ≤ 0.23) as a function of Nd content, x. Characterization of the structure functions using Rietveld refinement and the pair distribution functions with small-box refinement reveal complex disordering pathways; the average, long-range phase changes over a very narrow compositional range from pyrochlore ($Fd\bar{3}m$) to defect fluorite ($Fm\bar{3}m$) through full randomization of the cation and anion sublattices at x ~ 0.31, while the local, short-range structure continuously adopts a weberite-type atomic arrangement (C2221). Comparison to a previously studied Ho2Ti2-xZrxO7 solid solution series reveals how changes in chemical composition and stoichiometry modify defect formation and determine how disordering progresses across different length scales in pyrochlore oxides. |
---|---|
ISSN: | 1359-6454 1873-2453 |