Electron vacancy-level dependent hybrid photoionization of the F–@C60+molecule: A novel effect
Our previous studies [J. Phys. B 53, 125101 (2020); Euro. Phys. J. D 74, 191 (2020)] have predicted that the atom-fullerene hybrid photoionization properties for X = Cl, Br and I endohedrally confined in C60 are different before and after an electron transfers from C60 to the halogen. It was further...
Gespeichert in:
Veröffentlicht in: | Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2022-02, Vol.55 (4) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our previous studies [J. Phys. B 53, 125101 (2020); Euro. Phys. J. D 74, 191 (2020)] have predicted that the atom-fullerene hybrid photoionization properties for X = Cl, Br and I endohedrally confined in C60 are different before and after an electron transfers from C60 to the halogen. It was further found as a rule that the ionization dynamics is insensitive to the C60level the electron originates from to produce X–@C60+ . In the current study, we report an exception to this rule in F@C60. It is found that when the electron vacancy is situated in the C60level that participates in the hybridization in F–@C60+, the mixing becomes dramatically large leading to strong modifications in the photoionization of the hybrid levels. This novel effect is fundamentally based on a level-crossing phenomenon driven by the electron transfer in F@C60. But when the vacancy is at any other pure level of C60, the level-invariance is retained showing weak hybridization. Even though this case of F@C60 is an exception in the halogen@C60 series, the phenomenon can be more general and can occur with compounds of other atoms caged in a variety of fullerenes. Possible experimental studies are suggested to benchmark the present results. |
---|---|
ISSN: | 0953-4075 1361-6455 |