High-Entropy 2D Carbide MXenes: TiVNbMoC3 and TiVCrMoC3

Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1–4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remain limited in composition to one or two transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-08, Vol.15 (8), p.12815-12825
Hauptverfasser: Nemani, Srinivasa Kartik, Zhang, Bowen, Wyatt, Brian C, Hood, Zachary D, Manna, Sukriti, Khaledialidusti, Rasoul, Hong, Weichen, Sternberg, Michael G, Sankaranarayanan, Subramanian K. R. S, Anasori, Babak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1–4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remain limited in composition to one or two transition metals. In this study, by implementing four transition metals, we report the synthesis of multi-principal-element high-entropy M4C3T x MXenes. Specifically, we introduce two high-entropy MXenes, TiVNbMoC3T x and TiVCrMoC3T x , as well as their precursor TiVNbMoAlC3 and TiVCrMoAlC3 high-entropy MAX phases. We used a combination of real and reciprocal space characterization (X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and scanning transmission electron microscopy) to establish the structure, phase purity, and equimolar distribution of the four transition metals in high-entropy MAX and MXene phases. We use first-principles calculations to compute the formation energies and explore synthesizability of these high-entropy MAX phases. We also show that when three transition metals are used instead of four, under similar synthesis conditions to those of the four-transition-metal MAX phase, two different MAX phases can be formed (i.e., no pure single-phase forms). This finding indicates the importance of configurational entropy in stabilizing the desired single-phase high-entropy MAX over multiphases of MAX, which is essential for the synthesis of phase-pure high-entropy MXenes. The synthesis of high-entropy MXenes significantly expands the compositional variety of the MXene family to further tune their properties, including electronic, magnetic, electrochemical, catalytic, high temperature stability, and mechanical behavior.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c02775