Infrared MBE-Grown HgCdTe Focal Plane Arrays and Cameras After High Energy Neutron Irradiation

HgCdTe is one of the most important materials for the fabrication of infrared detectors and focal plane arrays (FPAs) deployed in environments where high-energy particles, such as protons and neutrons, are present. We designed and fabricated HgCdTe-based FPAs that can be used in high neutron radiati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2020-11, Vol.49 (11), p.7000-7006
Hauptverfasser: Chang, Yong, Velicu, Silviu, Sonde, Sushant, Kroc, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HgCdTe is one of the most important materials for the fabrication of infrared detectors and focal plane arrays (FPAs) deployed in environments where high-energy particles, such as protons and neutrons, are present. We designed and fabricated HgCdTe-based FPAs that can be used in high neutron radiation environments and we measured their characteristics. The influence of the radiation on the infrared FPAs and cameras is investigated. HgCdTe material and devices are capable of maintaining high performances in a high energy neutron irradiation environment. For MWIR FPA directly facing a 2.59 × 10 8 n/cm 2  s neutron flux beam (with the highest energy 66 MeV) for 1 h, the noise equivalent differential temperature (NEDT) increased ∼ 8 times after irradiation. However, NEDT decreased to 33 mK (compared to the original value of 21 mK) after one warming-up (to room temperature) and cooling-down cycle. The NEDT for the MWIR FPAs mounted parallel to the beam did not degrade (16 mK and 28 mK before irradiation, changed to 18 mK and 26 mK after irradiation, respectively).
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-020-08276-7