A hybrid meshfree discretization to improve the numerical performance of peridynamic models

Efficient and accurate calculation of spatial integrals is of major interest in the numerical implementation of peridynamics (PD). The standard way to perform this calculation is a particle-based approach that discretizes the strong form of the PD governing equation. This approach has rapidly been a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-03, Vol.391 (N/A), p.114544, Article 114544
Hauptverfasser: Shojaei, Arman, Hermann, Alexander, Cyron, Christian J., Seleson, Pablo, Silling, Stewart A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient and accurate calculation of spatial integrals is of major interest in the numerical implementation of peridynamics (PD). The standard way to perform this calculation is a particle-based approach that discretizes the strong form of the PD governing equation. This approach has rapidly been adopted by the PD community since it offers some advantages. It is computationally cheaper than other available schemes, can conveniently handle material separation, and effectively deals with nonlinear PD models. Nevertheless, PD models are still computationally very expensive compared with those based on the classical continuum mechanics theory, particularly for large-scale problems in three dimensions. This results from the nonlocal nature of the PD theory which leads to interactions of each node of a discretized body with multiple surrounding nodes. Here, we propose a new approach to significantly boost the numerical efficiency of PD models. We propose a discretization scheme that employs a simple collocation procedure and is truly meshfree; i.e., it does not depend on any background integration cells. In contrast to the standard scheme, the proposed scheme requires a much smaller set of neighboring nodes (keeping the same physical length scale) to achieve a specific accuracy and is thus computationally more efficient. Our new scheme is applicable to the case of linear PD models and within neighborhoods where the solution can be approximated by smooth basis functions. Therefore, to fully exploit the advantages of both the standard and the proposed schemes, a hybrid discretization is presented that combines both approaches within an adaptive framework. The high performance of the developed framework is illustrated by several numerical examples, including brittle fracture and corrosion problems in two and three dimensions.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2021.114544