The PDF perspective on the tracer-matter connection: Lagrangian bias and non-Poissonian shot noise

ABSTRACT We study the connection of matter density and its tracers from the probability density function (PDF) perspective. One aspect of this connection is the conditional expectation value 〈δtracer|δm〉 when averaging both tracer and matter density over some scale. We present a new way to incorpora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-03, Vol.510 (4), p.5069-5087
Hauptverfasser: Friedrich, Oliver, Halder, Anik, Boyle, Aoife, Uhlemann, Cora, Britt, Dylan, Codis, Sandrine, Gruen, Daniel, Hahn, ChangHoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We study the connection of matter density and its tracers from the probability density function (PDF) perspective. One aspect of this connection is the conditional expectation value 〈δtracer|δm〉 when averaging both tracer and matter density over some scale. We present a new way to incorporate a Lagrangian bias expansion of this expectation value into standard frameworks for modelling the PDF of density fluctuations and counts-in-cells statistics. Using N-body simulations and mock galaxy catalogues we confirm the accuracy of this expansion and compare it to the more commonly used Eulerian parametrization. For haloes hosting typical luminous red galaxies, the Lagrangian model provides a significantly better description of 〈δtracer|δm〉 at second order in perturbations. A second aspect of the matter-tracer connection is shot-noise, i.e. the scatter of tracer density around 〈δtracer|δm〉. It is well known that this noise can be significantly non-Poissonian and we validate the performance of a more general, two-parameter shot-noise model for different tracers and simulations. Both parts of our analysis are meant to pave the way for forthcoming applications to survey data.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab3703