Development of advanced machine learning models for analysis of plutonium surrogate optical emission spectra

This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2022-03, Vol.61 (7), p.D30-D38
Hauptverfasser: Rao, Ashwin P, Jenkins, Phillip R, Auxier, John D, Shattan, Michael B, Patnaik, Anil K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural network techniques are trained and tested on cerium-gallium pellet spectra. A thorough hyperparameter optimization experiment is conducted initially to determine the best design features for each model. The optimized models are evaluated for sensitivity and precision using the limit of detection (LoD) and root mean-squared error of prediction (RMSEP) metrics, respectively. Gaussian kernel regression yields the superlative predictive model with an RMSEP of 0.33% and an LoD of 0.015% for quantification of Ga in a Ce matrix. This study concludes that these machine learning methods could yield robust prediction models for rapid quality control analysis of plutonium alloys.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.444093