SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing
Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-01, Vol.120 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Nguyen, Phuong H. L. Rubin, Shimon Sarangi, Pulak Pal, Piya Fainman, Yeshaiahu |
description | Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room temperature inhomogeneous broadening as a function of the increased adenine concentration and employ this feature to develop one-dimensional and two dimensional chemical composition classification models of 200 long single stranded DNA sequences. Afterwards, we develop a reservoir computing chemical composition classification scheme of the same molecules and demonstrate enhanced performance that does not rely on manual feature identification. |
doi_str_mv | 10.1063/5.0075528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1839317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618735810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a42ad30e92df68f7440d6f7f7cedfea57c0585081c4e3619628e30816c89c3d73</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w6Elha7JpNtljqfUDioLVc0yT2Ta13ayZbaX_3q0VvHsaZniYYV5CzhntMZrzG9GjVAqRqQPSYVTKlDOmDkmHUsrTvBDsmJwgLtpWZJx3yPtk9DJJpwbBJYi3T4PEhlUd0Dc-VImpzHKLHpMv38wTX83DKsyggrDGpAbzkUxjMA4qX81a65IICHETfPzZsm7a-Sk5Ks0S4ey3dsnb3eh1-JCOn-8fh4NxarkqmtT0M-M4hSJzZa5K2e9Tl5eylBZcCUZIS4USVDHbB56zIs8U8LbNrSosd5J3ycV-b8DGa7S-ATu3oarANpopXnC2Q5d7VMfwuQZs9CKsY_sk6ixnSnKhGG3V1V7ZGBAjlLqOfmXiVjOqdylroX9Tbu313u4uml1o_8ObEP-grl3JvwFC_Yr0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618735810</pqid></control><display><type>article</type><title>SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nguyen, Phuong H. L. ; Rubin, Shimon ; Sarangi, Pulak ; Pal, Piya ; Fainman, Yeshaiahu</creator><creatorcontrib>Nguyen, Phuong H. L. ; Rubin, Shimon ; Sarangi, Pulak ; Pal, Piya ; Fainman, Yeshaiahu</creatorcontrib><description>Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room temperature inhomogeneous broadening as a function of the increased adenine concentration and employ this feature to develop one-dimensional and two dimensional chemical composition classification models of 200 long single stranded DNA sequences. Afterwards, we develop a reservoir computing chemical composition classification scheme of the same molecules and demonstrate enhanced performance that does not rely on manual feature identification.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0075528</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adenine ; Applied physics ; Chemical composition ; Classification ; Computation ; Data analysis ; Gene sequencing ; Machine learning ; Raman spectroscopy ; Room temperature ; Two dimensional models</subject><ispartof>Applied physics letters, 2022-01, Vol.120 (2)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a42ad30e92df68f7440d6f7f7cedfea57c0585081c4e3619628e30816c89c3d73</citedby><cites>FETCH-LOGICAL-c389t-a42ad30e92df68f7440d6f7f7cedfea57c0585081c4e3619628e30816c89c3d73</cites><orcidid>0000-0001-6319-4816 ; 0000000163194816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0075528$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1839317$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Phuong H. L.</creatorcontrib><creatorcontrib>Rubin, Shimon</creatorcontrib><creatorcontrib>Sarangi, Pulak</creatorcontrib><creatorcontrib>Pal, Piya</creatorcontrib><creatorcontrib>Fainman, Yeshaiahu</creatorcontrib><title>SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing</title><title>Applied physics letters</title><description>Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room temperature inhomogeneous broadening as a function of the increased adenine concentration and employ this feature to develop one-dimensional and two dimensional chemical composition classification models of 200 long single stranded DNA sequences. Afterwards, we develop a reservoir computing chemical composition classification scheme of the same molecules and demonstrate enhanced performance that does not rely on manual feature identification.</description><subject>Adenine</subject><subject>Applied physics</subject><subject>Chemical composition</subject><subject>Classification</subject><subject>Computation</subject><subject>Data analysis</subject><subject>Gene sequencing</subject><subject>Machine learning</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Two dimensional models</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w6Elha7JpNtljqfUDioLVc0yT2Ta13ayZbaX_3q0VvHsaZniYYV5CzhntMZrzG9GjVAqRqQPSYVTKlDOmDkmHUsrTvBDsmJwgLtpWZJx3yPtk9DJJpwbBJYi3T4PEhlUd0Dc-VImpzHKLHpMv38wTX83DKsyggrDGpAbzkUxjMA4qX81a65IICHETfPzZsm7a-Sk5Ks0S4ey3dsnb3eh1-JCOn-8fh4NxarkqmtT0M-M4hSJzZa5K2e9Tl5eylBZcCUZIS4USVDHbB56zIs8U8LbNrSosd5J3ycV-b8DGa7S-ATu3oarANpopXnC2Q5d7VMfwuQZs9CKsY_sk6ixnSnKhGG3V1V7ZGBAjlLqOfmXiVjOqdylroX9Tbu313u4uml1o_8ObEP-grl3JvwFC_Yr0</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Nguyen, Phuong H. L.</creator><creator>Rubin, Shimon</creator><creator>Sarangi, Pulak</creator><creator>Pal, Piya</creator><creator>Fainman, Yeshaiahu</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6319-4816</orcidid><orcidid>https://orcid.org/0000000163194816</orcidid></search><sort><creationdate>20220110</creationdate><title>SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing</title><author>Nguyen, Phuong H. L. ; Rubin, Shimon ; Sarangi, Pulak ; Pal, Piya ; Fainman, Yeshaiahu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a42ad30e92df68f7440d6f7f7cedfea57c0585081c4e3619628e30816c89c3d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenine</topic><topic>Applied physics</topic><topic>Chemical composition</topic><topic>Classification</topic><topic>Computation</topic><topic>Data analysis</topic><topic>Gene sequencing</topic><topic>Machine learning</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Phuong H. L.</creatorcontrib><creatorcontrib>Rubin, Shimon</creatorcontrib><creatorcontrib>Sarangi, Pulak</creatorcontrib><creatorcontrib>Pal, Piya</creatorcontrib><creatorcontrib>Fainman, Yeshaiahu</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Phuong H. L.</au><au>Rubin, Shimon</au><au>Sarangi, Pulak</au><au>Pal, Piya</au><au>Fainman, Yeshaiahu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing</atitle><jtitle>Applied physics letters</jtitle><date>2022-01-10</date><risdate>2022</risdate><volume>120</volume><issue>2</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room temperature inhomogeneous broadening as a function of the increased adenine concentration and employ this feature to develop one-dimensional and two dimensional chemical composition classification models of 200 long single stranded DNA sequences. Afterwards, we develop a reservoir computing chemical composition classification scheme of the same molecules and demonstrate enhanced performance that does not rely on manual feature identification.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0075528</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6319-4816</orcidid><orcidid>https://orcid.org/0000000163194816</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-01, Vol.120 (2) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_1839317 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Adenine Applied physics Chemical composition Classification Computation Data analysis Gene sequencing Machine learning Raman spectroscopy Room temperature Two dimensional models |
title | SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SERS-based%20ssDNA%20composition%20analysis%20with%20inhomogeneous%20peak%20broadening%20and%20reservoir%20computing&rft.jtitle=Applied%20physics%20letters&rft.au=Nguyen,%20Phuong%20H.%20L.&rft.date=2022-01-10&rft.volume=120&rft.issue=2&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0075528&rft_dat=%3Cproquest_osti_%3E2618735810%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618735810&rft_id=info:pmid/&rfr_iscdi=true |