SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing

Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-01, Vol.120 (2)
Hauptverfasser: Nguyen, Phuong H. L., Rubin, Shimon, Sarangi, Pulak, Pal, Piya, Fainman, Yeshaiahu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room temperature inhomogeneous broadening as a function of the increased adenine concentration and employ this feature to develop one-dimensional and two dimensional chemical composition classification models of 200 long single stranded DNA sequences. Afterwards, we develop a reservoir computing chemical composition classification scheme of the same molecules and demonstrate enhanced performance that does not rely on manual feature identification.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0075528